982 resultados para Space Geometry. Manipulatives. Distance Calculation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Along most of the U.S. east and gulf coasts from Long Island to the Mexican Border, bottom profiles extending over the Inner Continental Shelves normal from the coast display a characteristic two-sector shape. Near the coast, the 'shoreface' profile sector is steep and concave-up; the seaward 'ramp' sector is planar with a gradual slope away from the coast. As part of the Beach Evaluation Program at this Center, 9 profiles extending from the coast 30.5 km (19 miles) seaward at each of 49 localities were averaged to mathematically characterize the profiles and to develop and test criteria for discriminating among groups of profiles. Results indicate Inner Continental Shelf profiles can be mathematically defined by 4 parameters: a = ramp slope (0 - 0.00107); b = depth of the ramp at the shoreline, when the ramp is extended as a straight line below the shoreface sector (0 - 24.7 meters, 0 - 81 feet); c = distance from the shoreline to the shoreface-ramp boundary (0.2 - 20.6 km, 0.12 - 12.9 miles); and f = index of concavity of the shoreface sector (0.21 - 1.72). Values in parentheses are the range of values obtained for the 49 averaged profiles. An equation was developed to define bottom depth as a function of distance from shore incorporating these four parameters. Computed depths using the equation were found to be generally within 5% of actual profile depths. In most cases, no relationship was found between the geometric characteristics of the shoreface and the ramp.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing body of evidence that the processes mediating the allocation of spatial attention within objects may be separable from those governing attentional distribution between objects. In the neglect literature, a related proposal has been made regarding the perception of (within-object) sizes and (between-object) distances. This proposal follows observations that, in size-matching and bisection tasks, neglect is more strongly expressed when patients are required to attend to the sizes of discrete objects than to the (unfilled) distances between objects. These findings are consistent with a partial dissociation between size and distance processing, but a simpler alternative must also be considered. Whilst a neglect patient may fail to explore the full extent of a solid stimulus, the estimation of an unfilled distance requires that both endpoints be inspected before the task can be attempted at all. The attentional cueing implicit in distance estimation tasks might thus account for their superior performance by neglect patients. We report two bisection studies that address this issue. The first confirmed, amongst patients with left visual neglect, a reliable reduction of rightward error for unfilled gap stimuli as compared with solid lines. The second study assessed the cause of this reduction, deconfounding the effects of stimulus type (lines vs. gaps) and attentional cueing, by applying an explicit cueing manipulation to line and gap bisection tasks. Under these matched cueing conditions, all patients performed similarly on line and gap bisection tasks, suggesting that the reduction of neglect typically observed for gap stimuli may be attributable entirely to cueing effects. We found no evidence that a spatial extent, once fully attended, is judged any differently according to whether it is filled or unfilled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an efficient and robust method for the calculation of all S matrix elements (elastic, inelastic, and reactive) over an arbitrary energy range from a single real-symmetric Lanczos recursion. Our new method transforms the fundamental equations associated with Light's artificial boundary inhomogeneity approach [J. Chem. Phys. 102, 3262 (1995)] from the primary representation (original grid or basis representation of the Hamiltonian or its function) into a single tridiagonal Lanczos representation, thereby affording an iterative version of the original algorithm with greatly superior scaling properties. The method has important advantages over existing iterative quantum dynamical scattering methods: (a) the numerically intensive matrix propagation proceeds with real symmetric algebra, which is inherently more stable than its complex symmetric counterpart; (b) no complex absorbing potential or real damping operator is required, saving much of the exterior grid space which is commonly needed to support these operators and also removing the associated parameter dependence. Test calculations are presented for the collinear H+H-2 reaction, revealing excellent performance characteristics. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ergodic hypothesis asserts that a classical mechanical system will in time visit every available configuration in phase space. Thus, for an ergodic system, an ensemble average of a thermodynamic quantity can equally well be calculated by a time average over a sufficiently long period of dynamical evolution. In this paper, we describe in detail how to calculate the temperature and chemical potential from the dynamics of a microcanonical classical field, using the particular example of the classical modes of a Bose-condensed gas. The accurate determination of these thermodynamics quantities is essential in measuring the shift of the critical temperature of a Bose gas due to nonperturbative many-body effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geometric phases of scattering states in a ring geometry are studied on the basis of a variant of the adiabatic theorem. Three timescales, i.e., the adiabatic period, the system time and the dwell time, associated with adiabatic scattering in a ring geometry play a crucial role in determining geometric phases, in contrast to only two timescales, i.e., the adiabatic period and the dwell time, in an open system. We derive a formula connecting the gauge invariant geometric phases acquired by time-reversed scattering states and the circulating (pumping) current. A numerical calculation shows that the effect of the geometric phases is observable in a nanoscale electronic device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of geometric factors on the galvanic current density distribution for AZ91D coupled to steel was investigated using experimental measurements and a BEM model. The geometric factors were area ratio of anode/cathode, insulation distance between anode and cathode, depth of solution film covering the galvanic couple and the manner of interaction caused by two independent interacting galvanic couples. The galvanic current density distribution calculated from the BEM model was in good agreement with the experimental measurements. The galvanic current density distribution caused by the interaction of two independent galvanic couples can be reasonably predicted as the linear addition of the galvanic current density caused by each individual galvanic couple. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introductory courses covering modem physics sometimes introduce some elementary ideas from general relativity, though the idea of a geodesic is generally limited to shortest Euclidean length on a curved surface of two spatial dimensions rather than extremal aging in spacetime. It is shown that Epstein charts provide a simple geometric picture of geodesics in one space and one time dimension and that for a hypothetical uniform gravitational field, geodesics are straight lines on a planar diagram. This means that the properties of geodesics in a uniform field can be calculated with only a knowledge of elementary geometry and trigonometry, thus making the calculation of some basic results of general relativity accessible to students even in an algebra-based survey course on physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manipulation of micrometer sized particles with optical tweezers can be precisely modeled with electrodynamic theory using Mie's solution for spherical particles or the T-matrix method for more complex objects. We model optical tweezers for a wide range of parameters including size, relative refractive index and objective numerical aperture. We present the resulting landscapes of the trap stiffness and maximum applicable trapping force in the parameter space. These landscapes give a detailed insight into the requirements and possibilities of optical trapping and provide detailed information on trapping of nanometer sized particles or trapping of high index particles like diamond.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the effect of transmitter and receiver array configurations on the stray-light and diffraction-caused crosstalk in free-space optical interconnects. The optical system simulation software (Code V) is used to simulate both the stray-light and diffraction-caused crosstalk. Experimentally measured, spectrally-resolved, near-field images of VCSEL higher order modes were used as extended sources in our simulation model. Our results show that by changing the square lattice geometry to a hexagonal configuration, we obtain the reduction in the stray-light crosstalk of up to 9 dB and an overall signal-to-noise ratio improvement of 3 dB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we discuss a fast Bayesian extension to kriging algorithms which has been used successfully for fast, automatic mapping in emergency conditions in the Spatial Interpolation Comparison 2004 (SIC2004) exercise. The application of kriging to automatic mapping raises several issues such as robustness, scalability, speed and parameter estimation. Various ad-hoc solutions have been proposed and used extensively but they lack a sound theoretical basis. In this paper we show how observations can be projected onto a representative subset of the data, without losing significant information. This allows the complexity of the algorithm to grow as O(n m 2), where n is the total number of observations and m is the size of the subset of the observations retained for prediction. The main contribution of this paper is to further extend this projective method through the application of space-limited covariance functions, which can be used as an alternative to the commonly used covariance models. In many real world applications the correlation between observations essentially vanishes beyond a certain separation distance. Thus it makes sense to use a covariance model that encompasses this belief since this leads to sparse covariance matrices for which optimised sparse matrix techniques can be used. In the presence of extreme values we show that space-limited covariance functions offer an additional benefit, they maintain the smoothness locally but at the same time lead to a more robust, and compact, global model. We show the performance of this technique coupled with the sparse extension to the kriging algorithm on synthetic data and outline a number of computational benefits such an approach brings. To test the relevance to automatic mapping we apply the method to the data used in a recent comparison of interpolation techniques (SIC2004) to map the levels of background ambient gamma radiation. © Springer-Verlag 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of the work presented in this thesis is to investigate the two sides of the flute, the face and the heel of a twist drill. The flute face was designed to yield straight diametral lips which could be extended to eliminate the chisel edge, and consequently a single cutting edge will be obtained. Since drill rigidity and space for chip conveyance have to be a compromise a theoretical expression is deduced which enables optimum chip disposal capacity to be described in terms of drill parameters. This expression is used to describe the flute heel side. Another main objective is to study the effect on drill performance of changing the conventional drill flute. Drills were manufactured according to the new flute design. Tests were run in order to compare the performance of a conventional flute drill and non conventional design put forward. The results showed that 50% reduction in thrust force and approximately 18% reduction in torque were attained for the new design. The flank wear was measured at the outer corner and found to be less for the new design drill than for the conventional one in the majority of cases. Hole quality, roundness, size and roughness were also considered as a further aspect of drill performance. Improvement in hole quality is shown to arise under certain cutting conditions. Accordingly it might be possible to use a hole which is produced in one pass of the new drill which previously would have required a drilled and reamed hole. A subsidiary objective is to design the form milling cutter that should be employed for milling the foregoing special flute from drill blank allowing for the interference effect. A mathematical analysis in conjunction with computing technique and computers is used. To control the grinding parameter, a prototype drill grinder was designed and built upon the framework of an existing cincinnati cutter grinder. The design and build of the new grinder is based on a computer aided drill point geometry analysis. In addition to the conical grinding concept, the new grinder is also used to produce spherical point utilizing a computer aided drill point geometry analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper discusses the application of a similarity metric based on compression to the measurement of the distance among Bulgarian dia- lects. The similarity metric is de ned on the basis of the notion of Kolmo- gorov complexity of a le (or binary string). The application of Kolmogorov complexity in practice is not possible because its calculation over a le is an undecidable problem. Thus, the actual similarity metric is based on a real life compressor which only approximates the Kolmogorov complexity. To use the metric for distance measurement of Bulgarian dialects we rst represent the dialectological data in such a way that the metric is applicable. We propose two such representations which are compared to a baseline distance between dialects. Then we conclude the paper with an outline of our future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtain new combinatorial upper and lower bounds for the potential energy of designs in q-ary Hamming space. Combined with results on reducing the number of all feasible distance distributions of such designs this gives reasonable good bounds. We compute and compare our lower bounds to recently obtained universal lower bounds. Some examples in the binary case are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays we meet many different evaluation methods regarding the ecological performance of green surfaces and parks. All these methods are extremely valuable in determining how well a green surface performs from ecological aspect and to what extent the environment were damaged if these sites would be built or would be developed any other way causing reduction of green surfaces. The goal of the article is to clarify the differences between two evaluation methods (GSI – Green Space Intensity, BARC – Biological Activity Rate Calculation) suitable for urban green infrastructure analysis and to see if any significant difference can be observed evaluating the same site by these methods. Our research sites are in Budapest and their sizes vary between 2,5-8 acres. The most important aspects of site analysis are the following: size and boundaries of the park, existence or lack of water features, the characteristics of their surfaces and the complexity of vegetation. We summarize the data of the site analysis in tables, make a summarizing diagram for visual representation and draw conclusions from the results. As a final step, we evaluate how these two evaluation systems relate to urban open space developments.