986 resultados para Soil Solution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study explores the possible application of a biodegradable plant based surfactant, obtained from Sapindus mukorossi, for washing low levels of arsenic (As) from an iron (Fe) rich soil. Natural association of As(V) with Fe(III) makes the process difficult. Soapnut solution was compared to anionic surfactant sodium dodecyl sulfate (SDS) in down-flow and a newly introduced suction mode for soil
column washing. It was observed that soapnut attained up to 86% efficiency with respect to SDS in removing As. Full factorial design of experiment revealed a very good fit of data. The suction mode generated up to 83 kPa pressure inside column whilst down-flow mode generated a much higher pressure of 214 kPa, thus making the suction mode more efficient. Micellar solubilisation was found to
be responsible for As desorption from the soil and it followed 1st order kinetics. Desorption rate coefficient of suction mode was found to be in the range of 0.005 to 0.01, much higher than down-flow mode values. Analysis of the FT-IR data suggested that the soapnut solution did not interact chemically with As, offering an option for reusing the surfactant. Soapnut can be considered as a soil washing
agent for removing As even from soil with high Fe content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5–6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioluminescence-based, solid-contact toxicity assays allow test bacterium and toxicant to interact at the solid-solution interface. A lux- marked bacterium, Burkholderia sp. RASC, and 2,4-dichlorophenol (2,4-DCP) were used to characterize these interactions. In the basic bioassay, cells were added to soil slurries containing 2,4-DCP (0-120 μg ml-1). After 15 min, soil was removed by centrifugation, and bioluminescence in the supernatant was determined. Investigation of 2,4-DCP adsorption to soil revealed that sorption was linear and not significantly (p > 0.1) affected by the presence of Burkholderia cells. The numbers of culturable Burkholderia cells in the assay supernatant were 48.2 to 64.8% of the inoculum and independent of the soil weight. The effect of soil on 2,4-DCP toxicity was investigated by comparing soil aqueous extract and contact assays. The percentage bioluminescence for the contact assay was consistently higher than the extract assay at all test concentrations, and counts of viable Burkholderia cells were enhanced by the presence of 2,4-DCP in the contact assay. Expressing results as specific bioluminescence decreased the variability in response and the discrepancy in results between the two protocols. We suggest that solid-contact assays need improvement to ensure defined contact between cells and solid phase, and that the reporting of specific activity should be emphasized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autoclaved soil is commonly used for the study of xenobiotic sorption and as an abiotic control in biodegradation experiments. Autoclaving has been reported to alter soil physico-chemical and xenobiotic sorption characteristics such that comparison of autoclaved with non-autoclaved treatments in soil aging and bioavailability studies may yield misleading results. Experiments could be improved by using autoclaved soil re-inoculated with indigenous microorganisms as an additional or alternative non-sterile treatment for comparison with the sterile, autoclaved control. We examined the effect of autoclaving (3 x 1 h, 121°C, 103.5 KPa) on the physico-chemical properties of a silt loam soil (pH 7.2, 2.3% organic carbon) and the establishment of indigenous microorganisms reintroduced after autoclaving. Sterilisation by autoclaving significantly (p ≤ 0.05) decreased pH (0.6 of a unit) and increased concentrations of water-soluble organic carbon (WSOC; nontreated = 75 mg kg-1; autoclaved = 1526 mg kg-1). The initial first-order rate of 14C-2,4-dichloro-UL-phenol (2,4-DCP) adsorption to non-treated, autoclaved and re-inoculated soil was rapid (K1 = 16.8-24.4 h-1) followed by a slower linear phase (K2). In comparison with autoclaved soil (0.038% day-1), K2 values were higher for re-inoculated (0.095% day-1) and nontreated (0.181% day-1) soil. This was attributed to a biological process. The Freundlich adsorption coefficient (K(f)) for autoclaved soil was significantly (p ≤ 0.05) higher than for re-inoculated or non-treated soil. Increased adsorption was attributed to autoclaving-induced changes to soil pH and solution composition. Glucose-induced respiration of autoclaved soil after re-inoculation was initially twice that in the non-treated control, but it decreased to control levels by day 4. This reduction corresponded to a depletion of WSOC. 2,4-DCP mineralisation experiments revealed that the inoculum of nonsterile soil (0.5 g) contained 2,4-DCP-degrading microorganisms capable of survival in autoclaved soil. The lag phase before detection of significant 2,4-DCP mineralisation was reduced (from 7 days to ≤3 days) by pre-incubation of re-inoculated soils for 7 and 14 days before 2,4-DCP addition. This was attributed to the preferential utilisation of WSOC prior to the onset of 2,4-DCP mineralisation. Cumulative 14CO2 evolved after 21 days was significantly lower (p ≤ 0.05) from non-treated soil (25.3%) than re-inoculated soils (ca 45%). Experiments investigating sorption-biodegradation interactions of xenobiotics in soil require the physico-chemical properties of sterile and non-sterile treatments to be as comparable as possible. For fundamental studies, we suggest using re-inoculated autoclaved soil as an additional or alternative non-sterile treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este estudo baseou-se na análise dos mecanismos de transferência de elementos potencialmente tóxicos (PTE’s) entre o solo, a solução do solo e as plantas como forma de realizar uma avaliação mais eficaz do risco em áreas agrícolas. Foram aplicados conceitos recentemente desenvolvidos para a avaliação da reactividade biogeoquímica de contaminantes no solo e da sua partição sólido:solução recorrendo-se a modelos empíricos (tipo Freundlich). Estes modelos permitiram analisar a transferência de PTE’s ao longo da cadeia alimentar e avaliar o impacto da contaminação do solo na qualidade da alimentação animal (forragens) e Humana (vegetais e carne) em Portugal. Os modelos empíricos de transferência solo-planta de PTE’s foram utilizadas para obter limites críticos para estes elementos em solos agrícolas em Portugal, a partir dos seus limites legais nos alimentos para animais e teores máximos nos géneros alimentícios. Simultaneamente, modelos de exposição Humana a contaminantes do solo, desenvolvidos noutros países da UE foram analisados e foi proposto um modelo de exposição para Portugal. Este trabalho é uma contribuição para o desenvolvimento de critérios de qualidade de solos para áreas agrícolas em Portugal, tendo em vista a protecção da saúde animal e Humana. Contribuiu também para o desenvolvimento de uma estratégia de harmonização de políticas de protecção do solo (nomeadamente no que diz respeito aos problemas de contaminação) na União Europeia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation focused on the development, test and validation of methodologies for mercury fractionation and speciation in soil and sediment. After an exhaustive review of the literature, several methods were chosen and tested in well characterised soil and sediment samples. Sequential extraction procedures that divide mercury fractions according to their mobility and potential availability in the environment were investigated. The efficiency of different solvents for fractionation of mercury was evaluated, as well as the adequacy of different analytical instruments for quantification of mercury in the extracts. Kinetic experiments to establish the equilibrium time for mercury release from soil or sediment were also performed. It was found that in the studied areas, only a very small percentage of mercury is present as mobile species and that mobility is associated to higher aluminium and manganese contents, and that high contents of organic matter and sulfur result in mercury tightly bound to the matrix. Sandy soils tend to release mercury faster that clayey soils, and therefore, texture of soil or sediment has a strong influence on the mobility of mercury. It was also understood that analytical techniques for quantification of mercury need to be further developed, with lower quantification limits, particularly for mercury quantification of less concentrated fractions: water-soluble e exchangeable. Although the results provided a better understanding of the distribution of mercury in the sample, the complexity of the procedure limits its applicability and robustness. A proficiency-testing scheme targeting total mercury determination in soil, sediment, fish and human hair was organised in order to evaluate the consistency of results obtained by different laboratories, applying their routine methods to the same test samples. Additionally, single extractions by 1 mol L-1 ammonium acetate solution, 0.1 mol L-1 HCl and 0.1 mol L-1 CaCl2, as well as extraction of the organometallic fraction were proposed for soil; the last was also suggested for sediment and fish. This study was important to update the knowledge on analytical techniques that are being used for mercury quantification, the associated problems and sources of error, and to improve and standardize mercury extraction techniques, as well as to implement effective strategies for quality control in mercury determination. A different, “non chemical-like” method for mercury species identification was developed, optimised and validated, based on the thermo-desorption of the different mercury species. Compared to conventional extraction procedures, this method has advantages: it requires little to no sample treatment; a complete identification of species present is obtained in less than two hours; mercury losses are almost neglectable; can be considered “clean”, as no residues are produced; the worldwide comparison of results obtained is easier and reliable, an important step towards the validation of the method. Therefore, the main deliverables of this PhD thesis are an improved knowledge on analytical procedures for identification and quantification of mercury species in soils and sediments, as well as a better understanding of the factors controlling the behaviour of mercury in these matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the aspects of modern agriculture is characterised by a culture without soil (hydroponic cultures). These culture techniques are identified by possessing automatic control systems to control the nutrient solution. In first hydroponic cultures this control was accomplished by “on- off” analog controllers that applied a single control law implemented in hardware. Therefore, the changes of the control law resulted in the change of all interface electronics. In digital control implemented by micro-controllers the alteration of such control law is easily performed by changing only a computer program, leaving untouched all the interface hardware. In this way, the use and substitution of the control strategy is improved, as well, the use of advanced control strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we develop a methodology for the economic evaluation of soil tillage technologies, in a risky environment, and to capture the influence of farmer behaviour on his technology choice. The model has short-term activities, that change with the type of year, and long-term activities, in which sets of traction investment activities are included. Although these activities do not change with the type of year, they lead to different availability of resources for each type of year, since the same tractor has different available fieldwork days under different weather conditions. We prove that the model is sensitive to the greater income variability resulting from the use of alternative technologies and to the balance between income and risk, accounting for the probability of occurrence of each state of nature and giving an investment solution that considers the best production plan for each type of year. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple method was developed for treating corn seeds with oxamyl. It involved soaking the seeds to ensure oxamyl uptake, centrifugation to draw off excess solution, and drying under a stream of air to prevent the formation of fungus. The seeds were found to have an even distribution of oxamyl. Seeds remained fungus-free even 12 months after treatment. The highest nonphytotoxic treatment level was obtained by using a 4.00 mg/mL oxamyl solution. Extraction methods for the determination of oxamyl (methyl-N'N'-dimethyl-N-[(methylcarbamoyl)oxy]-l-thiooxamimidate), its oxime (methyl-N',N'-dimethyl-N-hydroxy-1-thiooxamimidate), and DMCF (N,N-dimethyl-1-cyanoformanade) in seed" root, and soil were developed. Seeds were processed by homogenizing, then shaking in methanol. Significantly more oxamyl was extracted from hydrated seeds as opposed to dry seeds. Soils were extracted by tumbling in methanol; recoveries range~ from 86 - 87% for oxamyl. Root was extracted to 93% efficiency for oxamyl by homogenizing the tissue in methanol. NucharAttaclay column cleanup afforded suitable extracts for analysis by RP-HPLC on a C18 column and UV detection at 254 nm. In the degradation study, oxamyl was found to dissipate from the seed down into the soil. It was also detected in the root. Oxime was detected in both the seed and soil, but not in the root. DMCF was detected in small amounts only in the seed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uptake of arsenic (As) by plants from contaminated soils presents a health hazard that may affect the use of agricultural and former industrial land. Methods for limiting the hazard are desirable. A proposed remediation treatment comprises the precipitation of iron (Fe) oxides in the contaminated soil by adding ferrous sulfate and lime. The effects on As bioavailability were assessed using a range of vegetable crops grown in the field. Four UK locations were used, where soil was contaminated by As from different sources. At the most contaminated site, a clay loam containing a mean of 748 mg As kg(-1) soil, beetroot, calabrese, cauliflower, lettuce, potato, radish and spinach were grown. For all crops except spinach, ferrous sulfate treatment caused a significant reduction in the bioavailability of As in some part of the crop. Application of ferrous sulfate in solution, providing 0.2% Fe oxides in the soil (0-10 cm), reduced As uptake by a mean of 22%. Solid ferrous sulfate was applied to give concentrations of 0.5% and 1% Fe oxides: the 0.5% concentration reduced As uptake by a mean of 32% and the 1% concentration gave no significant additional benefit. On a sandy loam containing 65 mg As kg(-1) soil, there was tentative evidence that ferrous sulfate treatment up to 2% Fe oxides caused a significant reduction in lettuce As, but calabrese did not respond. At the other two sites, the effects of ferrous sulfate treatment were not significant, but the uptake of soil As was low in treated and untreated soils. Differences between sites in the bioavailable fraction of soil As may be related to the soil texture or the source of As. The highest bioavailability was found on the soil which had been contaminated by aerial deposition and had a high sand content. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variable rate applications of nitrogen (N) are of environmental and economic interest. Regular measurements of soil N supply are difficult to achieve practically. Therefore accurate model simulations of soil N supply might provide a practical solution for site-specific management of N. Mineral N, an estimate of N supply, was simulated by the model SUNDIAL (Simulation of Nitrogen Dynamics In Arable Land) at more than 100 locations within three arable fields in Bedfordshire, UK. The results were compared with actual measurements. The outcomes showed that the spatial patterns of the simulations of mineral N corresponded to the measurements but the range of values was underestimated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative zinc (Zn) efficiencies of 33 wheat and 3 barley cultivars were determined by growing them in chelate-buffered culture solutions. Zn efficiency, determined by growth in a Zn-deficient solution relative to that in a medium containing an adequate concentration of Zn, was found to vary between 10% and 63% among the cultivars tested. Out of the 36 cultivars tested, 12 proved to be Zn efficient, 10 were Zn inefficient, and the remaining 14 varieties were classed as intermediate. The most Zn-efficient cultivars included Bakhtawar, Gatcher S61, Wilgoyne, and Madrigal, and the most Zn inefficient included Durati, Songlen, Excalibur, and Chakwal-86. Zn-efficient cultivars accumulated greater amounts of Zn in their shoots than inefficient cultivars, but the correlation between shoot Zn and shoot dry matter production was poor. All the cultivars accumulated higher concentrations of iron (Fe), copper (Cu), manganese (Mn), and phosphorus (P) at deficient levels of Zn, compared with adequate Zn concentrations. The Zn-inefficient cultivars accumulated higher concentrations of these other elements compared to efficient cultivars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulses of potassium (K+) applied to columns of repacked calcium (Ca2+) saturated soil were leached with distilled water or calcium chloride (CaCl2) solutions of various concentrations at a rate of 12 mm h(-1). With increased Ca2+ concentration, the rate of movement of K+ increased, as did the concentration of K+ in the displaced pulse, which was less dispersed. The movement of K+ in calcite-amended soil leached with water was at a similar rate to that of the untreated soil leached with 1 mM CaCl2, and in soil containing gypsum, movement was similar to that leached with 15 mM CaCl2. The Ca2+ concentrations in the leachates were about 0.4 and 15 mM respectively the expected values for the dissolution of the two amendments. Soil containing native K+ was leached with distilled water or CaCl2 solutions. The amount of K+ leached increased as Ca2+ concentration increased, with up to 34% of the exchangeable K+ being removed in five pore volumes of 15 mM CaCl2. Soil amended with calcite and leached with water lost K+ at a rate between that for leaching the unamended soil with 1 mM CaCl2 and that with water. Soil containing gypsum and leached with water lost K+ at a similar rate to unamended soil leached with 15 mM CaCl2. The presence of Ca2+ in irrigation water and of soil minerals able to release Ca2+ are of importance in determining the amounts of K+ leached from soils. The LEACHM model predicted approximately the displacement of K+, and was more accurate with higher concentrations of displacing solution. The shortcomings of this model are its inability to account for rate-controlled processes and the assumption that K+:Ca2+ exchange during leaching can be described using a constant adsorption coefficient. As a result, the pulse is predicted to appear a little earlier and the following edge has less of a tail than chat measured. In practical agriculture, the model will be more useful in soils containing gypsum or leached with saline water than in either calcareous or non-calcareous soils leached with rainwater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particle size distribution (psd) is one of the most important features of the soil because it affects many of its other properties, and it determines how soil should be managed. To understand the properties of chalk soil, psd analyses should be based on the original material (including carbonates), and not just the acid-resistant fraction. Laser-based methods rather than traditional sedimentation methods are being used increasingly to determine particle size to reduce the cost of analysis. We give an overview of both approaches and the problems associated with them for analyzing the psd of chalk soil. In particular, we show that it is not appropriate to use the widely adopted 8 pm boundary between the clay and silt size fractions for samples determined by laser to estimate proportions of these size fractions that are equivalent to those based on sedimentation. We present data from field and national-scale surveys of soil derived from chalk in England. Results from both types of survey showed that laser methods tend to over-estimate the clay-size fraction compared to sedimentation for the 8 mu m clay/silt boundary, and we suggest reasons for this. For soil derived from chalk, either the sedimentation methods need to be modified or it would be more appropriate to use a 4 pm threshold as an interim solution for laser methods. Correlations between the proportions of sand- and clay-sized fractions, and other properties such as organic matter and volumetric water content, were the opposite of what one would expect for soil dominated by silicate minerals. For water content, this appeared to be due to the predominance of porous, chalk fragments in the sand-sized fraction rather than quartz grains, and the abundance of fine (<2 mu m) calcite crystals rather than phyllosilicates in the clay-sized fraction. This was confirmed by scanning electron microscope (SEM) analyses. "Of all the rocks with which 1 am acquainted, there is none whose formation seems to tax the ingenuity of theorists so severely, as the chalk, in whatever respect we may think fit to consider it". Thomas Allan, FRS Edinburgh 1823, Transactions of the Royal Society of Edinburgh. (C) 2009 Natural Environment Research Council (NERC) Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant root mucilages contain powerful surfactants that will alter the interaction of soil solids with water and ions, and the rates of microbial processes. The lipid composition of maize, lupin and wheat root mucilages was analysed by thin layer chromatography and gas chromatography-mass spectrometry. A commercially available phosphatidylcholine (lecithin), chemically similar to the phospholipid surfactants identified in the mucilages, was then used to evaluate its effects on selected soil properties. The lipids found in the mucilages were principally phosphatidylcholines, composed mainly of saturated fatty acids, in contrast to the lipids extracted from root tissues. In soil at low tension, lecithin reduced the water content at any particular tension by as much as 10 and 50% in soil and acid-washed sand, respectively. Lecithin decreased the amount of phosphate adsorption in soil and increased the phosphate concentration in solution by 10%. The surfactant also reduced net rates of ammonium consumption and nitrate production in soil. These experiments provide the first evidence we are aware of that plant-released surfactants will significantly modify the biophysical environment of the rhizosphere.