886 resultados para Software engineering.
Resumo:
Effective comprehension of complex software systems requires understanding of both the individual documents that represent software and the complex relationships that exist within and between documents. Relationships of all kinds play a vital role in a software engineer's comprehension of, and navigation within and between, software documents. User-determined relationships have the additional role of enabling the engineer to create and maintain relational documentation that cannot be generated by tools or derived from other relationships. We argue that for a software development environment to effectively support the understanding of complex software systems, relational navigation must be supported at both the document-focused (intra-document) and relation-focused (inter-document) levels. The need for a relation-focused approach is highlighted by an evaluation of an existing document-focused relational interface. We conclude with the requirements for a relation-focused approach to relational navigation. These requirements focus on the user's perspective when interacting with a collection of related documents. We define the requirements for a software development environment that effectively supports the understanding of the software documents and relationships that define a complex software system.
Validation of a light-weight approach to knowledge-based re-engineering by a COBOL-to-Java converter
Resumo:
This chapter begins by reviewing the history of software engineering as a profession, especially the so-called software crisis and responses to it, to help focus on what it is that software engineers do. This leads into a discussion of the areas in software engineering that are problematic as a basis for considering knowledge management issues. Some of the previous work on knowledge management in software engineering is then examined, much of it not actually going under a knowledge management title, but rather “learning” or “expertise”. The chapter goes on to consider the potential for knowledge management in software engineering and the different types of knowledge management solutions and strategies that might be adopted, and it touches on the crucial importance of cultural issues. It concludes with a list of challenges that knowledge management in software engineering needs to address.
Resumo:
Using current software engineering technology, the robustness required for safety critical software is not assurable. However, different approaches are possible which can help to assure software robustness to some extent. For achieving high reliability software, methods should be adopted which avoid introducing faults (fault avoidance); then testing should be carried out to identify any faults which persist (error removal). Finally, techniques should be used which allow any undetected faults to be tolerated (fault tolerance). The verification of correctness in system design specification and performance analysis of the model, are the basic issues in concurrent systems. In this context, modeling distributed concurrent software is one of the most important activities in the software life cycle, and communication analysis is a primary consideration to achieve reliability and safety. By and large fault avoidance requires human analysis which is error prone; by reducing human involvement in the tedious aspect of modelling and analysis of the software it is hoped that fewer faults will persist into its implementation in the real-time environment. The Occam language supports concurrent programming and is a language where interprocess interaction takes place by communications. This may lead to deadlock due to communication failure. Proper systematic methods must be adopted in the design of concurrent software for distributed computing systems if the communication structure is to be free of pathologies, such as deadlock. The objective of this thesis is to provide a design environment which ensures that processes are free from deadlock. A software tool was designed and used to facilitate the production of fault-tolerant software for distributed concurrent systems. Where Occam is used as a design language then state space methods, such as Petri-nets, can be used in analysis and simulation to determine the dynamic behaviour of the software, and to identify structures which may be prone to deadlock so that they may be eliminated from the design before the program is ever run. This design software tool consists of two parts. One takes an input program and translates it into a mathematical model (Petri-net), which is used for modeling and analysis of the concurrent software. The second part is the Petri-net simulator that takes the translated program as its input and starts simulation to generate the reachability tree. The tree identifies `deadlock potential' which the user can explore further. Finally, the software tool has been applied to a number of Occam programs. Two examples were taken to show how the tool works in the early design phase for fault prevention before the program is ever run.
Resumo:
The success of the Semantic Web, as the next generation of Web technology, can have profound impact on the environment for formal software development. It allows both the software engineers and machines to understand the content of formal models and supports more effective software design in terms of understanding, sharing and reusing in a distributed manner. To realise the full potential of the Semantic Web in formal software development, effectively creating proper semantic metadata for formal software models and their related software artefacts is crucial. In this paper, a methodology with tool support is proposed to automatically derive ontological metadata from formal software models and semantically describe them.
Resumo:
Automated negotiation is widely applied in various domains. However, the development of such systems is a complex knowledge and software engineering task. So, a methodology there will be helpful. Unfortunately, none of existing methodologies can offer sufficient, detailed support for such system development. To remove this limitation, this paper develops a new methodology made up of: (1) a generic framework (architectural pattern) for the main task, and (2) a library of modular and reusable design pattern (templates) of subtasks. Thus, it is much easier to build a negotiating agent by assembling these standardised components rather than reinventing the wheel each time. Moreover, since these patterns are identified from a wide variety of existing negotiating agents (especially high impact ones), they can also improve the quality of the final systems developed. In addition, our methodology reveals what types of domain knowledge need to be input into the negotiating agents. This in turn provides a basis for developing techniques to acquire the domain knowledge from human users. This is important because negotiation agents act faithfully on the behalf of their human users and thus the relevant domain knowledge must be acquired from the human users. Finally, our methodology is validated with one high impact system.
Resumo:
Increasingly software systems are required to survive variations in their execution environment without or with only little human intervention. Such systems are called "eternal software systems". In contrast to the traditional view of development and execution as separate cycles, these modern software systems should not present such a separation. Research in MDE has been primarily concerned with the use of models during the first cycle or development (i.e. during the design, implementation, and deployment) and has shown excellent results. In this paper the author argues that an eternal software system must have a first-class representation of itself available to enable change. These runtime representations (or runtime models) will depend on the kind of dynamic changes that we want to make available during execution or on the kind of analysis we want the system to support. Hence, different models can be conceived. Self-representation inevitably implies the use of reflection. In this paper the author briefly summarizes research that supports the use of runtime models, and points out different issues and research questions. © 2009 IEEE.
Resumo:
The paper has been presented at the International Conference Pioneers of Bulgarian Mathematics, Dedicated to Nikola Obreshko ff and Lubomir Tschakaloff , Sofi a, July, 2006.
Resumo:
The given work is devoted to development of the computer-aided system of semantic text analysis of a technical specification. The purpose of this work is to increase efficiency of software engineering based on automation of semantic text analysis of a technical specification. In work it is offered and investigated a technique of the text analysis of a technical specification is submitted, the expanded fuzzy attribute grammar of a technical specification, intended for formalization of limited Russian language is constructed with the purpose of analysis of offers of text of a technical specification, style features of the technical specification as class of documents are considered, recommendations on preparation of text of a technical specification for the automated processing are formulated. The computer-aided system of semantic text analysis of a technical specification is considered. This system consist of the following subsystems: preliminary text processing, the syntactic and semantic analysis and construction of software models, storage of documents and interface.
Resumo:
Доклад по покана, поместен в сборника на Националната конференция "Образованието в информационното общество", Пловдив, май, 2010 г.