992 resultados para Software agents
Resumo:
In a liberalized electricity market, the Transmission System Operator (TSO) plays a crucial role in power system operation. Among many other tasks, TSO detects congestion situations and allocates the payments of electricity transmission. This paper presents a software tool for congestion management and transmission price determination in electricity markets. The congestion management is based on a reformulated Optimal Power Flow (OPF), whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the dispatch proposed by the market operator. The transmission price computation considers the physical impact caused by the market agents in the transmission network. The final tariff includes existing system costs and also costs due to the initial congestion situation and losses costs. The paper includes a case study for the IEEE 30 bus power system.
Resumo:
Tuberculosis (TB) is a worldwide infectious disease that has shown over time extremely high mortality levels. The urgent need to develop new antitubercular drugs is due to the increasing rate of appearance of multi-drug resistant strains to the commonly used drugs, and the longer durations of therapy and recovery, particularly in immuno-compromised patients. The major goal of the present study is the exploration of data from different families of compounds through the use of a variety of machine learning techniques so that robust QSAR-based models can be developed to further guide in the quest for new potent anti-TB compounds. Eight QSAR models were built using various types of descriptors (from ADRIANA.Code and Dragon software) with two publicly available structurally diverse data sets, including recent data deposited in PubChem. QSAR methodologies used Random Forests and Associative Neural Networks. Predictions for the external evaluation sets obtained accuracies in the range of 0.76-0.88 (for active/inactive classifications) and Q(2)=0.66-0.89 for regressions. Models developed in this study can be used to estimate the anti-TB activity of drug candidates at early stages of drug development (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a software tool (SIM_CMTP) that solves congestion situations and evaluates the taxes to be paid to the transmission system by market agents. SIM_CMTP provides users with a set of alternative methods for cost allocation and enables the definition of specific rules, according to each market and/or situation needs. With these characteristics, SIM_CMTP can be used as an operation aid for Transmission System Operator (TSO) or Independent System Operator (ISO). Due to its openness, it can also be used as a decision-making support tool for evaluating different options of market rules in competitive market environment, guarantying the economic sustainability of the transmission system.
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Audiovisual e Multimédia.
Resumo:
Electricity markets are complex environments, involving numerous entities trying to obtain the best advantages and profits while limited by power-network characteristics and constraints.1 The restructuring and consequent deregulation of electricity markets introduced a new economic dimension to the power industry. Some observers have criticized the restructuring process, however, because it has failed to improve market efficiency and has complicated the assurance of reliability and fairness of operations. To study and understand this type of market, we developed the Multiagent Simulator of Competitive Electricity Markets (MASCEM) platform based on multiagent simulation. The MASCEM multiagent model includes players with strategies for bid definition, acting in forward, day-ahead, and balancing markets and considering both simple and complex bids. Our goal with MASCEM was to simulate as many market models and player types as possible. This approach makes MASCEM both a short- and mediumterm simulation as well as a tool to support long-term decisions, such as those taken by regulators. This article proposes a new methodology integrated in MASCEM for bid definition in electricity markets. This methodology uses reinforcement learning algorithms to let players perceive changes in the environment, thus helping them react to the dynamic environment and adapt their bids accordingly.
Resumo:
A emergência de multiresistência apresentada por microrganismos é um dos grandes desafios que enfrentam actualmente os profissionais de Saúde e a população em geral. Os factores que contribuem para o desenvolvimento de resistência a antibióticos na comunidade podem ser categorizados como comportamentais ou ambientais/políticas. O objectivo deste trabalho foi caracterizar a situação actual na visão dos Pais de alunos do pré-escolar e 1º ciclo. De modo a avaliar as necessidades de intervenção e as actividades a serem desenvolvidas, um instrumento para estudar os hábitos e comportamentos adoptados na utilização de antibióticos, foi adaptado, validado e aplicado numa amostra piloto.
Resumo:
Competitive electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is an electricity market simulator able to model market players and simulate their operation in the market. As market players are complex entities, having their characteristics and objectives, making their decisions and interacting with other players, a multi-agent architecture is used and proved to be adequate. MASCEM players have learning capabilities and different risk preferences. They are able to refine their strategies according to their past experience (both real and simulated) and considering other agents’ behavior. Agents’ behavior is also subject to its risk preferences.
Resumo:
This paper consist in the establishment of a Virtual Producer/Consumer Agent (VPCA) in order to optimize the integrated management of distributed energy resources and to improve and control Demand Side Management DSM) and its aggregated loads. The paper presents the VPCA architecture and the proposed function-based organization to be used in order to coordinate the several generation technologies, the different load types and storage systems. This VPCA organization uses a frame work based on data mining techniques to characterize the costumers. The paper includes results of several experimental tests cases, using real data and taking into account electricity generation resources as well as consumption data.
Resumo:
Artificial intelligence techniques are being widely used to face the new reality and to provide solutions that can make power systems undergo all the changes while assuring high quality power. In this way, the agents that act in the power industry are gaining access to a generation of more intelligent applications, making use of a wide set of AI techniques. Knowledge-based systems and decision-support systems have been applied in the power and energy industry. This article is intended to offer an updated overview of the application of artificial intelligence in power systems. This article paper is organized in a way so that readers can easily understand the problems and the adequacy of the proposed solutions. Because of space constraints, this approach can be neither complete nor sufficiently deep to satisfy all readers’ needs. As this is amultidisciplinary area, able to attract both software and computer engineering and power system people, this article tries to give an insight into themost important concepts involved in these applications. Complementary material can be found in the reference list, providing deeper and more specific approaches.
Resumo:
OBJECTIVE: To extend an existing computer programme for the evaluation and design of shift schedules (BASS 3) by integrating workload as well as economic aspects. METHODS: The redesigned prototype BASS 4 includes a new module with a suitable and easily applicable screening method (EBA) for the assessment of the intensity of physical, emotional and cognitive workload components and their temporal patterns. Specified criterion functions based on these ratings allow for an adjustment of shift and rest duration according to the intensity of physical and mental workload. Furthermore, with regard to interactive effects both workload and temporal conditions, e.g. time of day, are taken into account. In a second new module, important economic aspects and criteria have been implemented. Different ergonomic solutions for scheduling problems can now also be evaluated with regard to their economic costs. RESULTS: The new version of the computer programme (BASS 4) can now simultaneously take into account numerous ergonomic, legal, agreed and economic criteria for the design and evaluation of working hours. CONCLUSIONS: BASS 4 can now be used as an instrument for the design and the evaluation of working hours with regard to legal, ergonomic and economic aspects at the shop floor as well as in administrative (e.g. health and safety inspection) and research problems.
Resumo:
The main purpose of this paper is to propose a Multi-Agent Autonomic and Bio-Inspired based framework with selfmanaging capabilities to solve complex scheduling problems using cooperative negotiation. Scheduling resolution requires the intervention of highly skilled human problem-solvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing (AC) evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference.
Resumo:
Since the last decade research in Group Decision Making area have been focus in the building of meeting rooms that could support the decision making task and improve the quality of those decisions. However the emergence of Ambient Intelligence concept contributes with a new perspective, a different way of viewing traditional decision rooms. In this paper we will present an overview of Smart Decision Rooms providing Intelligence to the meeting environment, and we will also present LAID, an Ambient Intelligence Environment oriented to support Group Decision Making and some of the software tools that we already have installed in this environment.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.
Resumo:
As it is well known, competitive electricity markets require new computing tools for power companies that operate in retail markets in order to enhance the management of its energy resources. During the last years there has been an increase of the renewable penetration into the micro-generation which begins to co-exist with the other existing power generation, giving rise to a new type of consumers. This paper develops a methodology to be applied to the management of the all the aggregators. The aggregator establishes bilateral contracts with its clients where the energy purchased and selling conditions are negotiated not only in terms of prices but also for other conditions that allow more flexibility in the way generation and consumption is addressed. The aggregator agent needs a tool to support the decision making in order to compose and select its customers' portfolio in an optimal way, for a given level of profitability and risk.
Resumo:
Cork processing wastewater is a very complex mixture of vegetal extracts and has, among other natural compounds, a very high content of phenolic/tannic colloidal matter that is responsible for severe environmental problems. In the present work, the concentration of this wastewater by nanofiltration was investigated with the aim of producing a cork tannin concentrate to be utilized in tanning. Permeation results showed that the permeate fluxes are controlled by both osmotic pressure and fouling/gel layer phenomena, leading to a rapid decrease of permeate fluxes with the concentration factor. The rejection coefficients to organic matter were higher than 95%, indicating that nanofiltration has a very good ability to concentrate the tannins and produce a permeate stream depleted from organic matter. The cork tannin concentrate obtained by nanofiltration and evaporation had total solids concentration of 34.8 g/l. The skins tanned by this concentrate were effectively converted to leather with a shrinking temperature of 7 degrees C.