901 resultados para Soccer - players
Resumo:
Smart Grids (SGs) appeared as the new paradigm for power system management and operation, being designed to integrate large amounts of distributed energy resources. This new paradigm requires a more efficient Energy Resource Management (ERM) and, simultaneously, makes this a more complex problem, due to the intensive use of distributed energy resources (DER), such as distributed generation, active consumers with demand response contracts, and storage units. This paper presents a methodology to address the energy resource scheduling, considering an intensive use of distributed generation and demand response contracts. A case study of a 30 kV real distribution network, including a substation with 6 feeders and 937 buses, is used to demonstrate the effectiveness of the proposed methodology. This network is managed by six virtual power players (VPP) with capability to manage the DER and the distribution network.
Resumo:
Power systems have been through deep changes in recent years, namely with the operation of competitive electricity markets in the scope and the increasingly intensive use of renewable energy sources and distributed generation. This requires new business models able to cope with the new opportunities that have emerged. Virtual Power Players (VPPs) are a new player type which allows aggregating a diversity of players (Distributed Generation (DG), Storage Agents (SA), Electrical Vehicles, (V2G) and consumers), to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players` benefits. A major task of VPPs is the remuneration of generation and services (maintenance, market operation costs and energy reserves), as well as charging energy consumption. This paper proposes a model to implement fair and strategic remuneration and tariff methodologies, able to allow efficient VPP operation and VPP goals accomplishment in the scope of electricity markets.
Resumo:
The increasing importance given by environmental policies to the dissemination and use of wind power has led to its fast and large integration in power systems. In most cases, this integration has been done in an intensive way, causing several impacts and challenges in current and future power systems operation and planning. One of these challenges is dealing with the system conditions in which the available wind power is higher than the system demand. This is one of the possible applications of demand response, which is a very promising resource in the context of competitive environments that integrates even more amounts of distributed energy resources, as well as new players. The methodology proposed aims the maximization of the social welfare in a smart grid operated by a virtual power player that manages the available energy resources. When facing excessive wind power generation availability, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. The proposed method is especially useful when actual and day-ahead wind forecast differ significantly. The proposed method has been computationally implemented in GAMS optimization tool and its application is illustrated in this paper using a real 937-bus distribution network with 20310 consumers and 548 distributed generators, some of them with must take contracts.
Resumo:
Power system organization has gone through huge changes in the recent years. Significant increase in distributed generation (DG) and operation in the scope of liberalized markets are two relevant driving forces for these changes. More recently, the smart grid (SG) concept gained increased importance, and is being seen as a paradigm able to support power system requirements for the future. This paper proposes a computational architecture to support day-ahead Virtual Power Player (VPP) bid formation in the smart grid context. This architecture includes a forecasting module, a resource optimization and Locational Marginal Price (LMP) computation module, and a bid formation module. Due to the involved problems characteristics, the implementation of this architecture requires the use of Artificial Intelligence (AI) techniques. Artificial Neural Networks (ANN) are used for resource and load forecasting and Evolutionary Particle Swarm Optimization (EPSO) is used for energy resource scheduling. The paper presents a case study that considers a 33 bus distribution network that includes 67 distributed generators, 32 loads and 9 storage units.
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimization techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper details some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study based on real data.
Resumo:
A presente dissertação endereça o desenvolvimento de um sistema de visão stereo ativo para os robôs de futebol robótico da equipa ISePorto do ISEP, de modo a que estes tirem o máximo partido das câmaras rotativas neles existentes. Este trabalho surge da necessidade de melhorar a capacidade de perceção do ambiente por parte dos robôs, principalmente da perceção da bola quando não está no plano do campo e dos robôs adversários. Esta necessidade surge devido ao aumento da dinâmica que se tem vindo a veri car ultimamente nas competições. Para tal, foram estudados algumas trabalhos relacionados no que diz respeito a sistemas de visão stereo com baselines variáveis e eixos de rotação em ambas as câmaras, bem como fundamentos de visão stereo. Foi proposta uma arquitetura para o sistema de visão ativo de modo a ser aplicado em qualquer robô da equipa MSL (Middle Size League). Para tornar possível a implementação desta arquitetura foi desenvolvido um procedimento para a calibração e determinação em tempo real dos parâmetros extrínsecos do par stereo em função da posição angular dos eixos rotativos do robô. O sistema de visão foi também dotado de capacidade de sincronismo e foram implementadas funcionalidades ao nível de software que possibilitam a deteção de objetos na imagem, a correspondência de objetos presentes nas imagens de ambas as câmaras e consequentemente a determinação das posições tridimensionais desses objetos relativamente ao robô. O sistema desenvolvido foi testado e validado em cenário MSL ao nível de perceção da bola, robôs adversários e linhas do campo. Os resultados obtidos apresentam uma melhoria signi cativa, face à implementação atual dos robôs, na perceção tridimensional da bola quando não está no plano do campo, e dos robôs adversários.
Resumo:
Team sports represent complex systems: players interact continuously during a game, and exhibit intricate patterns of interaction, which can be identified and investigated at both individual and collective levels. We used Voronoi diagrams to identify and investigate the spatial dynamics of players' behavior in Futsal. Using this tool, we examined 19 plays of a sub-phase of a Futsal game played in a reduced area (20 m(2)) from which we extracted the trajectories of all players. Results obtained from a comparative analysis of player's Voronoi area (dominant region) and nearest teammate distance revealed different patterns of interaction between attackers and defenders, both at the level of individual players and teams. We found that, compared to defenders, larger dominant regions were associated with attackers. Furthermore, these regions were more variable in size among players from the same team but, at the player level, the attackers' dominant regions were more regular than those associated with each of the defenders. These findings support a formal description of the dynamic spatial interaction of the players, at least during the particular sub-phase of Futsal investigated. The adopted approach may be extended to other team behaviors where the actions taken at any instant in time by each of the involved agents are associated with the space they occupy at that particular time.
Resumo:
Session 7: Playing with Roles, images and improvising New States of Awareness, 3rd Global Conference, 1st November – 3rd November, 2014, Prague, Czech Republic.
Resumo:
The game of football demands new computational approaches to measure individual and collective performance. Understanding the phenomena involved in the game may foster the identification of strengths and weaknesses, not only of each player, but also of the whole team. The development of assertive quantitative methodologies constitutes a key element in sports training. In football, the predictability and stability inherent in the motion of a given player may be seen as one of the most important concepts to fully characterise the variability of the whole team. This paper characterises the predictability and stability levels of players during an official football match. A Fractional Calculus (FC) approach to define a player’s trajectory. By applying FC, one can benefit from newly considered modeling perspectives, such as the fractional coefficient, to estimate a player’s predictability and stability. This paper also formulates the concept of attraction domain, related to the tactical region of each player, inspired by stability theory principles. To compare the variability inherent in the player’s process variables (e.g., distance covered) and to assess his predictability and stability, entropy measures are considered. Experimental results suggest that the most predictable player is the goalkeeper while, conversely, the most unpredictable players are the midfielders. We also conclude that, despite his predictability, the goalkeeper is the most unstable player, while lateral defenders are the most stable during the match.
Resumo:
The integration of growing amounts of distributed generation in power systems, namely at distribution networks level, has been fostered by energy policies in several countries around the world, including in Europe. This intensive integration of distributed, non-dispatchable, and natural sources based generation (including wind power) has caused several changes in the operation and planning of power systems and of electricity markets. Sometimes the available non-dispatchable generation is higher than the demand. This generation must be used; otherwise it is wasted if not stored or used to supply additional demand. New policies and market rules, as well as new players, are needed in order to competitively integrate all the resources. The methodology proposed in this paper aims at the maximization of the social welfare in a distribution network operated by a virtual power player that aggregates and manages the available energy resources. When facing a situation of excessive non-dispatchable generation, including wind power, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. This method is especially useful when actual and day-ahead resources forecast differ significantly. The distribution network characteristics and concerns are addressed by including the network constraints in the optimization model. The proposed methodology has been implemented in GAMS optimization tool and its application is illustrated in this paper using a real 937-bus distribution network with 20.310 consumers and 548 distributed generators, some of them non-dispatchable and with must take contracts. The implemented scenario corresponds to a real day in Portuguese power system.
Resumo:
Power systems have been through deep changes in recent years, namely due to the operation of competitive electricity markets in the scope the increasingly intensive use of renewable energy sources and distributed generation. This requires new business models able to cope with the new opportunities that have emerged. Virtual Power Players (VPPs) are a new type of player that allows aggregating a diversity of players (Distributed Generation (DG), Storage Agents (SA), Electrical Vehicles (V2G) and consumers) to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players’ benefits. A major task of VPPs is the remuneration of generation and services (maintenance, market operation costs and energy reserves), as well as charging energy consumption. This paper proposes a model to implement fair and strategic remuneration and tariff methodologies, able to allow efficient VPP operation and VPP goals accomplishment in the scope of electricity markets.
Resumo:
Electricity Markets are not only a new reality but an evolving one as the involved players and rules change at a relatively high rate. Multi-agent simulation combined with Artificial Intelligence techniques may result in very helpful sophisticated tools. This paper presents a new methodology for the management of coalitions in electricity markets. This approach is tested using the multi-agent market simulator MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), taking advantage of its ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as coalitions of agents, with the capability of negotiating both in the market and internally, with their members in order to combine and manage their individual specific characteristics and goals, with the strategy and objectives of the VPP itself. A case study using real data from the Iberian Electricity Market is performed to validate and illustrate the proposed approach.
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
The rising usage of distributed energy resources has been creating several problems in power systems operation. Virtual Power Players arise as a solution for the management of such resources. Additionally, approaching the main network as a series of subsystems gives birth to the concepts of smart grid and micro grid. Simulation, particularly based on multi-agent technology is suitable to model all these new and evolving concepts. MASGriP (Multi-Agent Smart Grid simulation Platform) is a system that was developed to allow deep studies of the mentioned concepts. This paper focuses on a laboratorial test bed which represents a house managed by a MASGriP player. This player is able to control a real installation, responding to requests sent by the system operators and reacting to observed events depending on the context.
Resumo:
Artificial Intelligence has been applied to dynamic games for many years. The ultimate goal is creating responses in virtual entities that display human-like reasoning in the definition of their behaviors. However, virtual entities that can be mistaken for real persons are yet very far from being fully achieved. This paper presents an adaptive learning based methodology for the definition of players’ profiles, with the purpose of supporting decisions of virtual entities. The proposed methodology is based on reinforcement learning algorithms, which are responsible for choosing, along the time, with the gathering of experience, the most appropriate from a set of different learning approaches. These learning approaches have very distinct natures, from mathematical to artificial intelligence and data analysis methodologies, so that the methodology is prepared for very distinct situations. This way it is equipped with a variety of tools that individually can be useful for each encountered situation. The proposed methodology is tested firstly on two simpler computer versus human player games: the rock-paper-scissors game, and a penalty-shootout simulation. Finally, the methodology is applied to the definition of action profiles of electricity market players; players that compete in a dynamic game-wise environment, in which the main goal is the achievement of the highest possible profits in the market.