845 resultados para Smoker - Insulin resistance


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The systemic response to injury or infection is often accompanied by significant alterations in host metabolism and glucose homeostasis. Within the liver, these changes include a decrease in glycogenesis and an increase in gluconeogenesis, and in peripheral tissues, the development of insulin resistance and the increased utilization of glucose by non-insulin-dependent pathways. Depending on the severity and the duration of the response, both hyper- and hypoglycemia can ensue and each can become a clinically important manifestation of the systemic inflammatory response. The protein known as macrophage migration inhibitory factor (MIF) has been identified recently to play a central role in host immunity and to regulate glucocorticoid effects on the immune and inflammatory systems. MIF is released in vivo from activated immune cells as well as by the anterior pituitary gland upon stimulation of the hypothalamic-pituitary-adrenal axis. MIF also has been found to be secreted together with insulin from the pancreatic beta-cells and to act as an autocrine factor to stimulate insulin release. Since circulating MIF levels are elevated during stress or systemic inflammatory processes, this protein may play a central role in the control of insulin secretion during various disease states.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High-fructose diet stimulates hepatic de novo lipogenesis (DNL) and causes hypertriglyceridemia and insulin resistance in rodents. Fructose-induced insulin resistance may be secondary to alterations of lipid metabolism. In contrast, fish oil supplementation decreases triglycerides and may improve insulin resistance. Therefore, we studied the effect of high-fructose diet and fish oil on DNL and VLDL triglycerides and their impact on insulin resistance. Seven normal men were studied on four occasions: after fish oil (7.2 g/day) for 28 days; a 6-day high-fructose diet (corresponding to an extra 25% of total calories); fish oil plus high-fructose diet; and control conditions. Following each condition, fasting fractional DNL and endogenous glucose production (EGP) were evaluated using [1-13C]sodium acetate and 6,6-2H2 glucose and a two-step hyperinsulinemic-euglycemic clamp was performed to assess insulin sensitivity. High-fructose diet significantly increased fasting glycemia (7 +/- 2%), triglycerides (79 +/- 22%), fractional DNL (sixfold), and EGP (14 +/- 3%, all P < 0.05). It also impaired insulin-induced suppression of adipose tissue lipolysis and EGP (P < 0.05) but had no effect on whole- body insulin-mediated glucose disposal. Fish oil significantly decreased triglycerides (37%, P < 0.05) after high-fructose diet compared with high-fructose diet without fish oil and tended to reduce DNL but had no other significant effect. In conclusion, high-fructose diet induced dyslipidemia and hepatic and adipose tissue insulin resistance. Fish oil reversed dyslipidemia but not insulin resistance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glitazones are efficient insulin sensitizers that blunt the effects of angiotensin II (ANG II) in the rat. Sodium chloride is another important modulator of the systemic and renal effects of ANG II. Whether glitazones interfere with the interaction between sodium and the response to ANG II is not known. Therefore, we investigated the effects of pioglitazone on the relationship between sodium and the systemic and renal effects of ANG II in rats. Pioglitazone, or vehicle, was administered for 4 wk to 8-wk-old obese Zucker rats. Animals were fed a normal-sodium (NS) or a high-sodium (HS) diet. Intravenous glucose tolerance tests, systemic and renal hemodynamic responses to ANG II, and the renal ANG II binding and expression of ANG II type 1 (AT(1)) receptors were measured. The results of our study were that food intake and body weight increased, whereas blood pressure, heart rate, filtration fraction, and insulin levels decreased significantly with pioglitazone in obese rats on both diets. Pioglitazone blunted the systemic response to ANG II and abolished the increased responsiveness to ANG II induced by a HS diet. Pioglitazone modified the renal hemodynamic response to changes in salt intake while maintaining a lower filtration fraction with ANG II perfusion. These effects were associated with a decrease in the number and expression of the AT(1) receptor in the kidney. In conclusion, these data demonstrate that the peroxisome proliferator-activated receptor-gamma agonist pioglitazone modifies the physiological relationship between sodium chloride and the response to ANG II in insulin-resistant rats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CONTEXT: The worldwide epidemic of overweight and obesity is setting the scene for a new wave of premature cardiovascular disease. OBJECTIVE: The objective of this study was to define relationships between dyslipidemia and other metabolic abnormalities in overweight subjects. DESIGN: This study included comparison of overweight subjects with and without dyslipidemia. SETTING: The setting was an institutional practice. PATIENTS: Dyslipidemic subjects (n = 715) had plasma triglyceride greater than or equal to the 75th percentile in combination with high-density lipoprotein cholesterol (HDL-C) less than or equal to the 25th percentile. Unrelated, normolipidemic controls (n = 1073) had HDL-C higher than the median and triglyceride lower than the median. It was a requirement for the control subjects to have a body mass index (BMI) greater than 25 kg/m(2). MAIN OUTCOME MEASURES: The main outcome measures included BMI, inflammatory markers, adipokines, blood pressure, and fasting plasma glucose and insulin. RESULTS: The mean BMI in the subjects and controls was 28.7 and 28.2 kg/m(2), respectively. Subjects had higher levels of plasma high-sensitivity C-reactive protein (3.0 vs. 2.0 mg/liter; P < 0.001), lower levels of adiponectin (4.7 vs. 6.6 mg/liter; P < 0.001), and, after adjustment for age, BMI, gender, smoking, statin, and beta-blocker use, higher systolic (P = 0.001) and diastolic (P = 0.05) blood pressures. Fasting plasma glucose, insulin, and homeostasis model of assessment-insulin resistance were all significantly higher in subjects than controls (P < 0.0001). CONCLUSIONS: Identification of people solely on the basis of an elevated plasma triglyceride and a low HDL-C uncovers an overweight group of people who have a generalized metabolic disorder. In contrast, overweight people with normal plasma lipids have normal glucose and insulin metabolism, low levels of inflammatory markers, and normal blood pressure. Such people may thus be at relatively low risk of developing diabetes and cardiovascular disease despite being overweight.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: Exercise improves insulin resistance and is a first line for the prevention and treatment of type 2 diabetes. The extent, however, to which these responses are dose dependent is not known. The purpose of this study was to examine whether exercise dose was associated with improvements in insulin sensitivity after 4 months of exercise training in previously sedentary adults. METHODS: Fifty-five healthy volunteers participated in a 16-wk supervised endurance exercise intervention with a pre/postintervention design. Insulin sensitivity was assessed by euglycemic hyperinsulinemic clamp, peak oxygen uptake by a graded exercise test, and body composition by dual-energy x-ray absorptiometry. The exercise intervention consisted of three to five sessions per week with a minimum of three sessions supervised. A ramped exercise prescription protocol was used to achieve 75% of peak HR for 45 min per session. Exercise dose, expressed as average kilocalories expended per week, was computed as the product of exercise intensity, duration and frequency. RESULTS: Improved insulin sensitivity was significantly related to exercise dose in a graded dose-response relationship. No evidence of threshold or maximal dose-response effect was observed. Age and gender did not influence this dose-response relationship. Exercise intensity was also significantly related to improvements in insulin sensitivity, whereas frequency was not. CONCLUSIONS: This study identifies a graded dose-response relationship between exercise dose and improvements in insulin sensitivity. The implication of this observation is of importance for the adaptation of exercise prescription in clinical situations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: To assess how intrahepatic fat and insulin resistance relate to daily fructose and energy intake during short-term overfeeding in healthy subjects. DESIGN AND METHODS: The analysis of the data collected in several studies in which fasting hepatic glucose production (HGP), hepatic insulin sensitivity index (HISI), and intrahepatocellular lipids (IHCL) had been measured after both 6-7 days on a weight-maintenance diet (control, C; n = 55) and 6-7 days of overfeeding with 1.5 (F1.5, n = 7), 3 (F3, n = 17), or 4 g fructose/kg/day (F4, n = 10), with 3 g glucose/kg/day (G3, n = 11), or with 30% excess energy as saturated fat (fat30%, n = 10). RESULTS: F3, F4, G3, and fat30% all significantly increased IHCL, respectively by 113 ± 86, 102 ± 115, 59 ± 92, and 90 ± 74% as compared to C (all P < 0.05). F4 and G3 increased HGP by 16 ± 10 and 8 ± 11% (both P < 0.05), and F3 and F4 significantly decreased HISI by 20 ± 22 and 19 ± 14% (both P < 0.01). In contrast, there was no significant effect of fat30% on HGP or HISI. CONCLUSIONS: Short-term overfeeding with fructose or glucose decreases hepatic insulin sensitivity and increases hepatic fat content. This indicates short-term regulation of hepatic glucose metabolism by simple carbohydrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Impaired glucose regulation (IGR) is associated with detrimental cardiovascular outcomes such as cardiovascular disease risk factors (CVD risk factors) or intima-media thickness (IMT). Our aim was to examine whether these associations are mediated by body mass index (BMI), waist circumference (waist) or fasting serum insulin (insulin) in a population in the African region. Methods Major CVD risk factors (systolic blood pressure, smoking, LDL-cholesterol, HDL-cholesterol,) were measured in a random sample of adults aged 25-64 in the Seychelles (n=1255, participation rate: 80.2%). According to the criteria of the American Diabetes Association, IGR was divided in four ordered categories: 1) normal fasting glucose (NFG), 2) impaired fasting glucose (IFG) and normal glucose tolerance (IFG/NGT), 3) IFG and impaired glucose tolerance (IFG/IGT), and 4) diabetes mellitus (DM). Carotid and femoral IMT was assessed by ultrasound (n=496). Results Age-adjusted levels of the major CVD risk factors worsened gradually across IGR categories (NFG < IFG/NGT < IFG/IGT < DM), particularly HDL-cholesterol and blood pressure (p for trend <0.001). These relationships were marginally attenuated upon further adjustment for waist, BMI or insulin (whether considered alone or combined) and most of these relationships remained significant. With regards to IMT, the association was null with IFG/NGT, weak with IFG/IGT and stronger with DM (all more markedly at femoral than carotid levels). The associations between IMT and IFG/IGT or DM (adjusted by age and major CVD risk factors) decreased only marginally upon further adjustment for BMI, waist or insulin. Further adjustment for family history of diabetes did not alter the results. Conclusions We found graded relationships between IGR categories and both major CVD risk factors and carotid/femoral IMT. These relationships were only partly accounted for by BMI, waist and insulin. This suggests that increased CVD-risk associated with IGR is also mediated by factors other than the considered markers of adiposity and insulin resistance. The results also imply that IGR and associated major CVD risk factors should be systematically screened and appropriately managed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: High fructose consumption is suspected to be causally linked to the epidemics of obesity and metabolic disorders. In rodents, fructose leads to insulin resistance and ectopic lipid deposition. In humans, the effects of fructose on insulin sensitivity remain debated, whereas its effect on ectopic lipids has never been investigated. OBJECTIVE: We assessed the effect of moderate fructose supplementation on insulin sensitivity (IS) and ectopic lipids in healthy male volunteers (n = 7). DESIGN: IS, intrahepatocellular lipids (IHCL), and intramyocellular lipids (IMCL) were measured before and after 1 and 4 wk of a high-fructose diet containing 1.5 g fructose . kg body wt(-1) . d(-1). Adipose tissue IS was evaluated from nonesterified fatty acid suppression, hepatic IS from suppression of hepatic glucose output (6,6-2H2-glucose), and muscle IS from the whole-body glucose disposal rate during a 2-step hyperinsulinemic euglycemic clamp. IHCL and IMCL were measured by 1H magnetic resonance spectroscopy. RESULTS: Fructose caused significant (P < 0.05) increases in fasting plasma concentrations of triacylglycerol (36%), VLDL-triacylglycerol (72%), lactate (49%), glucose (5.5%), and leptin (48%) without any significant changes in body weight, IHCL, IMCL, or IS. IHCL were negatively correlated with triacylglycerol after 4 wk of the high-fructose diet (r = -0.78, P < 0.05). CONCLUSION: Moderate fructose supplementation over 4 wk increases plasma triacylglycerol and glucose concentrations without causing ectopic lipid deposition or insulin resistance in healthy humans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Elevated levels of γ-glutamyltransferase (GGT) have been associated with elevated blood pressure (BP) and diabetes. However, the causality of these relations has not been addressed. The authors performed a cross-sectional analysis (2003-2006) among 4,360 participants from the population-based Cohorte Lausannoise (CoLaus) Study (Lausanne, Switzerland). The rs2017869 variant of the γ-glutamyltransferase 1 (GGT1) gene, which explained 1.6% of the variance in GGT levels, was used as an instrument for Mendelian randomization (MR). Sex-specific GGT quartiles were strongly associated with both systolic and diastolic BP (all P's < 0.0001). After multivariable adjustment, these relations were attenuated but remained significant. Using MR, the authors observed no positive association of GGT with BP (systolic: β -5.68, 95% confidence interval (CI): -11.51, 0.16 (P = 0.06); diastolic: β = -2.24, 95% CI: -5.98, 1.49 (P = 0.24)). The association of GGT with insulin was also attenuated after multivariable adjustment but persisted in the fully adjusted model (β = 0.07, 95% CI: 0.04, 0.09; P < 0.0001). Using MR, the authors also observed a positive association of GGT with insulin (β = 0.19, 95% CI: 0.01, 0.37; P = 0.04). In conclusion, the authors found evidence for a direct causal relation of GGT with fasting insulin but not with BP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bipolar disorder (BD) is associated with substantial morbidity, as well as premature mortality. Available evidence indicates that 'stress-sensitive' chronic medical disorders, such as cardiovascular disease, obesity and Type 2 diabetes mellitus, are critical mediators and/or moderators of BD. Changes in physiologic systems implicated in allostasis have been proposed to impact brain structures and neurocognition, as well as medical comorbidity in this population. For example, abnormalities in insulin physiology, for example, insulin resistance, hyperinsulinemia and central insulinopenia, are implicated as effectors of allostatic load in BD. Insulin's critical role in CNS physiological (e.g., neurotrophism and synaptic plasticity) and pathophysiological (e.g., neurocognitive deficits, pro-apoptosis and amyloid deposition) processes is amply documented. This article introduces the concept that insulin is a mediator of allostatic load in the BD and possibly a therapeutic target.