1000 resultados para Slippage Sensing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For compressive sensing, we endeavor to improve the atom selection strategy of the existing orthogonal matching pursuit (OMP) algorithm. To achieve a better estimate of the underlying support set progressively through iterations, we use a least squares solution based atom selection method. From a set of promising atoms, the choice of an atom is performed through a new method that uses orthogonal projection along-with a standard matched filter. Through experimental evaluations, the effect of projection based atom selection strategy is shown to provide a significant improvement for the support set recovery performance, in turn, the compressive sensing recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ethanol sensing properties of porous Cr2O3 thin films deposited by the ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture is reported. The impact of the precursor selection and various deposition parameters on the film crystallinity, surface morphology and stoichiometry are studied using thermo-gravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy techniques. The film morphology exhibits a highly porous nature, as a result of the exothermic combustion reaction during film deposition. The gas sensing properties of these films are investigated in the temperature range of 200-375 degrees C for ethanol. The films show two different regions of response for ethanol above and below 300 degrees C. A good relationship between the response and the ethanol concentration is observed, and is modeled using an empirical relation. The possible mechanism and the surface chemical reactions of ethanol over the chromium oxide surface are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an ab initio design and development of a novel Fiber Bragg Grating (FBG) sensor based strain sensing plate for the measurement of plantar strain distribution in human foot. The primary aim of this work is to study the feasibility of usage of FBG sensors in the measurement of plantar strain in the foot; in particular, to spatially resolve the strain distribution in the foot at different regions such as fore-foot, mid-foot and hind-foot. This study also provides a method to quantify and compare relative postural stability of different subjects under test; in addition, traditional accelerometers have been used to record the movements of center of gravity (second lumbar vertebra) of the subject and the results obtained have been compared against the outcome of the postural stability studies undertaken using the developed FBG plantar strain sensing plate. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, Platinum (Pt)/Copper (II) oxide (CuO) thin film based ethanol sensors were fabricated by sputtering of Pt in varying concentrations over pre-sputtered nanostructured CuO films. The responses of these sensors as a function of Pt concentrations were studied using operating temperature modulation (200-450 °C) and ethanol concentration modulation (100-2500 ppm). During these modulations, it was found that the sensing response was maximum at operating temperature near 400 °C for all the samples irrespective of the Pt concentration dispersed over them. Moreover, the sensing behavior improves for lower Pt concentration (Pt/CuO-60s) and deteriorates for higher Pt concentration (Pt/CuO-120s). In comparison with bare CuO sample, the sensitivity of Pt/CuO-60s increased up to 22% in the linear range and 33% for maximum ethanol concentration. Hence, the well dispersed optimum Pt additive concentration improves the overall sensing behavior including sensitivity, linear working range and response as well as recovery time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous algorithms have been proposed recently for sparse signal recovery in Compressed Sensing (CS). In practice, the number of measurements can be very limited due to the nature of the problem and/or the underlying statistical distribution of the non-zero elements of the sparse signal may not be known a priori. It has been observed that the performance of any sparse signal recovery algorithm depends on these factors, which makes the selection of a suitable sparse recovery algorithm difficult. To take advantage in such situations, we propose to use a fusion framework using which we employ multiple sparse signal recovery algorithms and fuse their estimates to get a better estimate. Theoretical results justifying the performance improvement are shown. The efficacy of the proposed scheme is demonstrated by Monte Carlo simulations using synthetic sparse signals and ECG signals selected from MIT-BIH database.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we show a novel chemo-mechanical-optical sensing mechanism in single and multi-layer hydrogel coated Fiber Bragg Grating (FBG) and demonstrate specific application in pH activated processes. The sensing device is based on the ionizable monomers inside the hydrogel which reversibly dissociates as a function of the pH and consequently resulting in osmotic pressure difference between the gel and the solution. This pressure gradient causes the hydrogel to deform which in turn induces secondary strain on the FBG sensor resulting in shift in the Bragg wavelength. We also report on the sensitivity factor of single and multilayer hydrogel coated FBG at various different pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new electron-rich metal-organic frameworks (MOF-1-MOF-3) have been synthesized by employing ligands bearing aromatic tags. The key role of the chosen aromatic tags is to enhance the -electron density of the luminescent MOFs. Single-crystal X-ray structures have revealed that these MOFs form three-dimensional porous networks with the aromatic tags projecting inwardly into the pores. These highly luminescent electron-rich MOFs have been successfully utilized for the detection of explosive nitroaromatic compounds (NACs) on the basis of fluorescence quenching. Although all of the prepared MOFs can serve as sensors for NACs, MOF-1 and MOF-2 exhibit superior sensitivity towards 4-nitrotoluene (4-NT) and 2,4-dinitrotoluene (DNT) compared to 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrobenzene (TNB). MOF-3, on the other hand, shows an order of sensitivity in accordance with the electron deficiencies of the substrates. To understand such anomalous behavior, we have thoroughly analyzed both the steady-state and time-resolved fluorescence quenching associated with these interactions. Determination of static Stern-Volmer constants (K-S) as well as collisional constants (K-C) has revealed that MOF-1 and MOF-2 have higher K-S values with 4-NT than with TNT, whereas for MOF-3 the reverse order is observed. This apparently anomalous phenomenon was well corroborated by theoretical calculations. Moreover, recyclability and sensitivity studies have revealed that these MOFs can be reused several times and that their sensitivities towards TNT solution are at the parts per billion (ppb) level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, it has been shown that fusion of the estimates of a set of sparse recovery algorithms result in an estimate better than the best estimate in the set, especially when the number of measurements is very limited. Though these schemes provide better sparse signal recovery performance, the higher computational requirement makes it less attractive for low latency applications. To alleviate this drawback, in this paper, we develop a progressive fusion based scheme for low latency applications in compressed sensing. In progressive fusion, the estimates of the participating algorithms are fused progressively according to the availability of estimates. The availability of estimates depends on computational complexity of the participating algorithms, in turn on their latency requirement. Unlike the other fusion algorithms, the proposed progressive fusion algorithm provides quick interim results and successive refinements during the fusion process, which is highly desirable in low latency applications. We analyse the developed scheme by providing sufficient conditions for improvement of CS reconstruction quality and show the practical efficacy by numerical experiments using synthetic and real-world data. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present experimental study investigates the influence of post-deposition annealing on the transverse piezoelectric coefficient (d(31)) value of ZnO thin films deposited on a flexible metal alloy substrate, and its relationship with the vibration sensing performance. Highly c-axis oriented and crystalline ZnO thin films were deposited on flexible Phynox alloy substrate via radio frequency (RF) reactive magnetron sputtering. ZnO thin film samples were annealed at different temperatures ranging from 100 degrees C to 500 degrees C, resulting in the temperature of 300 degrees C determined as the optimum annealing temperature. The crystallinity, morphology, microstructure, and rms surface roughness of annealed ZnO thin films were systematically investigated by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM), respectively. The piezoelectric d(31) coefficient value was measured by 4-point bending method. ZnO thin film annealed at 300 degrees C was highly c-axis oriented, crystalline, possesses fine surface morphology with uniformity in the grain size. This film showed higher d(31) coefficient value of 7.2 pm V-1. A suitable in-house designed and developed experimental set-up, for evaluating the vibration sensing performance of annealed ZnO thin films is discussed. As expected the ZnO thin film annealed at 300 degrees C showed relatively better result for vibration sensing studies. It generates comparatively higher peak output voltage of 147 mV, due to improved structural and morphological properties, and higher piezoelectric d(31) coefficient value. (C) 2014 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that etched fiber Bragg gratings (eFBGs) coated with single walled carbon nanotubes (SWNTs) and graphene oxide (GO) are highly sensitive and accurate biochemical sensors. Here, for detecting protein concanavalin A (Con A), mannose-functionalized poly(propyl ether imine) (PETIM) dendrimers (DMs) have been attached to the SWNTs (or GO) coated on the surface modified eFBG. The dendrimers act as multivalent ligands, having specificity to detect lectin Con A. The specificity of the sensor is shown by a much weaker response (factor of similar to 2500 for the SWNT and similar to 2000 for the GO coated eFBG) to detect non specific lectin peanut agglutinin. DM molecules functionalized GO coated eFBG sensors showed excellent specificity to Con A even in the presence of excess amount of an interfering protein bovine serum albumin. The shift in the Bragg wavelength (Delta lambda(B)) with respect to the lambda(B) values of SWNT (or GO)-DM coated eFBG for various concentrations of lectin follows Langmuir type adsorption isotherm, giving an affinity constant of similar to 4 x 10(7) M-1 for SWNTs coated eFBG and similar to 3 x 10(8) M-1 for the GO coated eFBG. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although many sparse recovery algorithms have been proposed recently in compressed sensing (CS), it is well known that the performance of any sparse recovery algorithm depends on many parameters like dimension of the sparse signal, level of sparsity, and measurement noise power. It has been observed that a satisfactory performance of the sparse recovery algorithms requires a minimum number of measurements. This minimum number is different for different algorithms. In many applications, the number of measurements is unlikely to meet this requirement and any scheme to improve performance with fewer measurements is of significant interest in CS. Empirically, it has also been observed that the performance of the sparse recovery algorithms also depends on the underlying statistical distribution of the nonzero elements of the signal, which may not be known a priori in practice. Interestingly, it can be observed that the performance degradation of the sparse recovery algorithms in these cases does not always imply a complete failure. In this paper, we study this scenario and show that by fusing the estimates of multiple sparse recovery algorithms, which work with different principles, we can improve the sparse signal recovery. We present the theoretical analysis to derive sufficient conditions for performance improvement of the proposed schemes. We demonstrate the advantage of the proposed methods through numerical simulations for both synthetic and real signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and synthesis of a new tri- and tetracoordinate boron conjugate is reported. The conjugate shows broad near-IR emission (similar to 625-850 nm) and is found to be a selective colorimetric and ratiometric sensor for fluoride ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the systematic comparative study of highly c-axis oriented and crystalline piezoelectric ZnO thin films deposited on four different flexible substrates for vibration sensing application. The flexible substrates employed for present experimental study were namely a metal alloy (Phynox), metal (aluminum), polyimide (Kapton), and polyester (Mylar). ZnO thin films were deposited by an RF reactive magnetron sputtering technique. ZnO thin films of similar thicknesses of 700 +/- 30 nm were deposited on four different flexible substrates to have proper comparative studies. The crystallinity, surface morphology, chemical composition, and roughness of ZnO thin films were evaluated by respective material characterization techniques. The transverse piezoelectric coefficient (d(31)) value for assessing the piezoelectric property of ZnO thin films on different flexible substrates was measured by a four-point bending method. ZnO thin films deposited on Phynox alloy substrate showed relatively better material characterization results and a higher piezoelectric d(31) coefficient value as compared to ZnO films on metal and polymer substrates. In order to experimentally verify the above observations, vibration sensing studies were performed. As expected, the ZnO thin film deposited on Phynox alloy substrate showed better vibration sensing performance. It has generated the highest peak to peak output voltage amplitude of 256 mV as compared to that of aluminum (224 mV), Kapton (144 mV), and Mylar (46 mV). Therefore, metal alloy flexible substrate proves to be a more suitable, advantageous, and versatile choice for integrating ZnO thin films as compared to metal and polymer flexible substrates for vibration sensing applications. The present experimental study is extremely important and helpful for the selection of a suitable flexible substrate for various applications in the field of sensor and actuator technology.