886 resultados para Skidmore, Stanley
Resumo:
Fluid diffusion in glassy polymers proceeds in ways that are not explained by the standard diffusion model. Although the reasons for the anomalous effects are not known, much of the observed behavior is attributed to the long times that polymers below their glass transition temperature take to adjust to changes in their condition. The slow internal relaxations of the polymer chains ensure that the material properties are history-dependent, and also allow both local inhomogeneities and differential swelling to occur. Two models are developed in this thesis with the intent of accounting for these effects in the diffusion process.
In Part I, a model is developed to account for both the history dependence of the glassy polymer, and the dual sorption which occurs when gas molecules are immobilized by the local heterogeneities. A preliminary study of a special case of this model is conducted, showing the existence of travelling wave solutions and using perturbation techniques to investigate the effect of generalized diffusion mechanisms on their form. An integral averaging method is used to estimate the penetrant front position.
In Part II, a model is developed for particle diffusion along with displacements in isotropic viscoelastic materials. The nonlinear dependence of the materials on the fluid concentration is taken into account, while pure displacements are assumed to remain in the range of linear viscoelasticity. A fairly general model is obtained for three-dimensional irrotational movements, with the development of the model being based on the assumptions of irreversible thermodynamics. With the help of some dimensional analysis, this model is simplified to a version which is proposed to be studied for Case II behavior.
Resumo:
With the size of transistors approaching the sub-nanometer scale and Si-based photonics pinned at the micrometer scale due to the diffraction limit of light, we are unable to easily integrate the high transfer speeds of this comparably bulky technology with the increasingly smaller architecture of state-of-the-art processors. However, we find that we can bridge the gap between these two technologies by directly coupling electrons to photons through the use of dispersive metals in optics. Doing so allows us to access the surface electromagnetic wave excitations that arise at a metal/dielectric interface, a feature which both confines and enhances light in subwavelength dimensions - two promising characteristics for the development of integrated chip technology. This platform is known as plasmonics, and it allows us to design a broad range of complex metal/dielectric systems, all having different nanophotonic responses, but all originating from our ability to engineer the system surface plasmon resonances and interactions. In this thesis, we demonstrate how plasmonics can be used to develop coupled metal-dielectric systems to function as tunable plasmonic hole array color filters for CMOS image sensing, visible metamaterials composed of coupled negative-index plasmonic coaxial waveguides, and programmable plasmonic waveguide network systems to serve as color routers and logic devices at telecommunication wavelengths.
Resumo:
Successful management has been defined as the art of spending money wisely and well. Profits may not be the end and all of business but they are certainly the test of practicality. Everything worth while should pay for itself. One proposal is no better than another, except as in the working-out it yields better results.
Resumo:
The complex domain structure in ferroelectrics gives rise to electromechanical coupling, and its evolution (via domain switching) results in a time-dependent (i.e. viscoelastic) response. Although ferroelectrics are used in many technological applications, most do not attempt to exploit the viscoelastic response of ferroelectrics, mainly due to a lack of understanding and accurate models for their description and prediction. Thus, the aim of this thesis research is to gain better understanding of the influence of domain evolution in ferroelectrics on their dynamic mechanical response. There have been few studies on the viscoelastic properties of ferroelectrics, mainly due to a lack of experimental methods. Therefore, an apparatus and method called Broadband Electromechanical Spectroscopy (BES) was designed and built. BES allows for the simultaneous application of dynamic mechanical and electrical loading in a vacuum environment. Using BES, the dynamic stiffness and loss tangent in bending and torsion of a particular ferroelectric, viz. lead zirconate titanate (PZT), was characterized for different combinations of electrical and mechanical loading frequencies throughout the entire electric displacement hysteresis. Experimental results showed significant increases in loss tangent (by nearly an order of magnitude) and compliance during domain switching, which shows promise as a new approach to structural damping. A continuum model of the viscoelasticity of ferroelectrics was developed, which incorporates microstructural evolution via internal variables and associated kinetic relations. For the first time, through a new linearization process, the incremental dynamic stiffness and loss tangent of materials were computed throughout the entire electric displacement hysteresis for different combinations of mechanical and electrical loading frequencies. The model accurately captured experimental results. Using the understanding gained from the characterization and modeling of PZT, two applications of domain switching kinetics were explored by using Micro Fiber Composites (MFCs). Proofs of concept of set-and-hold actuation and structural damping using MFCs were demonstrated.
Resumo:
Conformational equilibrium in medium-sized rings has been investigated by the temperature variation of the fluorine-19 n.m.r. spectra of 1, 1-difluorocycloalkanes and various substituted derivatives of them. Inversion has been found to be fast on the n.m.r. time scale at -180˚ for 1, 1-difluorocycloheptane, but slow for 1, 1-difluoro-4, 4-dimethylcycloheptane at -150˚. At low temperature, the latter compound affords a single AB pattern with a chemical-shift difference of 841 cps. which has been interpreted in terms of the twist-chair conformation with the methyl groups on the axis position and the fluorine atoms in the 4-position. At room temperature, the n.m.r. spectrum of 1, 1-difluoro-4-t-butylcycloheptane affords an AB pattern with a chemical-shift difference of 185 cps. The presence of distinct trans and gauche couplings from the adjacent hydrogens has been interpreted to suggest the existence of a single predominant form, the twist chair with the fluorine atoms on the axis position.
Investigation of 1, 1-difluorocycloöctane and 1, 1, 4, 4-tetrafluorocycloöctane has led to the detection of two kinetic processes both having activation energies of 8-10 kcal./mole but quite different A values. In light of these results eleven different conformations of cycloöctane along with a detailed description of the ways in which they may be interconverted are discussed. An interpretation involving the twist-boat conformation rapidly equilibrating through the saddle and the parallel-boat forms at room temperature is compatible with the results.
Resumo:
An experimental method combined with boundary layer theory is given for evaluating the added mass of a sphere moving along the axis of a circular cylinder filled with water or oil. The real fluid effects are separated from ideal fluid effects.
The experimental method consists essentially of a magnetic steel sphere propelled from rest by an electromagnetic coil in which the current is accurately controlled so that it only supplies force for a short time interval which is within the laminar flow regime of the fluid. The motion of the sphere as a function of time is recorded on single frame photographs using a short-arc multiple flash lamp with accurately controlled time intervals between flashes.
A concept of the effect of boundary layer displacement on the fluid flow around a sphere is introduced to evaluate the real fluid effects on the added mass. Surprisingly accurate agreement between experiment and theory is achieved.
Resumo:
The feedback coding problem for Gaussian systems in which the noise is neither white nor statistically independent between channels is formulated in terms of arbitrary linear codes at the transmitter and at the receiver. This new formulation is used to determine a number of feedback communication systems. In particular, the optimum linear code that satisfies an average power constraint on the transmitted signals is derived for a system with noiseless feedback and forward noise of arbitrary covariance. The noisy feedback problem is considered and signal sets for the forward and feedback channels are obtained with an average power constraint on each. The general formulation and results are valid for non-Gaussian systems in which the second order statistics are known, the results being applicable to the determination of error bounds via the Chebychev inequality.
Resumo:
The differential cross section for the reaction γp → π+n was measured at 32 laboratory photon energies between 589 and 1269 MeV at the Caltech Synchrotron. At each energy, data have been obtained at typically fifteen π+ c.m. angles between 6° and 90°. A magnetic spectrometer was used to detect the π+ photo-produced in a liquid hydrogen target. Two Cherenkov counters were used to reject the background of positrons and protons. The data clearly show the presence of a pole in the production amplitude due to the one pion exchange. Moravcsik fits to the 32 angular distributions, including data from another experiment, are presented. The extrapolation of these fits to the pole gives a value for the pion-nucleon coupling constant of 14.5 which is consistent with the accepted value. The second and third pion-nucleon resonances are evident as peaks in the total cross section and as changes in the shape of the angular distributions. At the third resonance there is evidence for both a D5/2 and an F5/2 amplitude. The absence of large variations in the 0° and 180° cross sections implies that the second and third resonances are mostly produced from an initial state with helicity ± 3/2.