1000 resultados para Single visit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic difficulties arising from mild brain injury (TBI) are difficult to predict because the processes underlying changes after TBI are poorly understood. In mild brain injury the extent of neuropsychiatric and cognitive symptoms correspond poorly to overt tissue loss (Barth 1983; Liu 2010). Cellular, immune and hormonal cascades occurring after injury and continuing during the healing process may impact uninjured brain regions sensitive to the effects of physiological and emotional stress, which receive projections from the injury site. Changes in these most basic properties due to injury or disease have profound implications for virtually every aspect of brain function through disruption of neurotransmitter, neuroendocrine and metabolic systems. In order to screen for changes in transmitter and metabolic activity, in this study we developed Single voxel proton Magnetic Resonance Spectroscopy (1H-MRS) for use in both injured and control animals. We first evaluated if 1H-MRS could be used to evaluate in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus in both control and injured animals after controlled cortical impact injury to the rat prefrontal cortex. We found that metabolite measurements for Myo-Inositol, Choline, creatine, Glutamate+Glutamine, and N-acetyl-acetate are attainable in deep brain structures in vivo in injured and controls rats. We next seek to evaluate longitudinally, in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus during the first month after controlled cortical impact injury to the rat prefrontal cortex. These ongoing studies will provide data on the changes in transmitters and metabolites over time in injured and non-injured subjects. These studies address some of the fundamental questions about how mild brain injury has such diverse effects on overall brain health and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A switching control strategy is proposed for single inductor current-fed push-pull converter with a secondary side active voltage doubler rectifier or a voltage rectifier used in photovoltaic (PV) grid interfacing. The proposed switching control strategy helps to turn-on and turn-off the primary side power switches with zero-voltage and zero-current switching. The operation of the push-pull converter is analyzed for two modes of operation. The feasibility of the proposed switching control strategy is validated using simulation and experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic modelling is critical in GNSS data processing. Currently, GNSS data processing commonly relies on the empirical stochastic model which may not reflect the actual data quality or noise characteristics. This paper examines the real-time GNSS observation noise estimation methods enabling to determine the observation variance from single receiver data stream. The methods involve three steps: forming linear combination, handling the ionosphere and ambiguity bias and variance estimation. Two distinguished ways are applied to overcome the ionosphere and ambiguity biases, known as the time differenced method and polynomial prediction method respectively. The real time variance estimation methods are compared with the zero-baseline and short-baseline methods. The proposed method only requires single receiver observation, thus applicable to both differenced and un-differenced data processing modes. However, the methods may be subject to the normal ionosphere conditions and low autocorrelation GNSS receivers. Experimental results also indicate the proposed method can result on more realistic parameter precision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis). CUBIC is a simple and efficient method involving the immersion of brain samples in chemical mixtures containing aminoalcohols, which enables rapid whole-brain imaging with single-photon excitation microscopy. CUBIC is applicable to multicolor imaging of fluorescent proteins or immunostained samples in adult brains and is scalable from a primate brain to subcellular structures. We also developed a whole-brain cell-nuclear counterstaining protocol and a computational image analysis pipeline that, together with CUBIC reagents, enable the visualization and quantification of neural activities induced by environmental stimulation. CUBIC enables time-course expression profiling of whole adult brains with single-cell resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of whole-body imaging at single-cell resolution enables system-level approaches to studying cellular circuits in organisms. Previous clearing methods focused on homogenizing mismatched refractive indices of individual tissues, enabling reductions in opacity but falling short of achieving transparency. Here, we show that an aminoalcohol decolorizes blood by efficiently eluting the heme chromophore from hemoglobin. Direct transcardial perfusion of an aminoalcohol-containing cocktail that we previously termed CUBIC coupled with a 10 day to 2 week clearing protocol decolorized and rendered nearly transparent almost all organs of adult mice as well as the entire body of infant and adult mice. This CUBIC-perfusion protocol enables rapid whole-body and whole-organ imaging at single-cell resolution by using light-sheet fluorescent microscopy. The CUBIC protocol is also applicable to 3D pathology, anatomy, and immunohistochemistry of various organs. These results suggest that whole-body imaging of colorless tissues at high resolution will contribute to organism-level systems biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this project is to investigate the strain-rate dependent mechanical behaviour of single living cells using both experimental and numerical techniques. The results revealed that living cells behave as porohyperlastic materials and that both solid and fluid phases within the cells play important roles in their mechanical responses. The research reported in this thesis provides a better understanding of the mechanisms underlying the cellular responses to external mechanical loadings and of the process of mechanical signal transduction in living cells. It would help us to enhance knowledge of and insight into the role of mechanical forces in supporting tissue regeneration or degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Osseointegrated Prosthetic Limb (OPL) was introduced in 2011. The socket prostheses failed to address a few major requirements of normal gait. Our hypothesis was that using an Osseointegrated Prosthetic limb will result in superior function of daily activities, without compromising patients’ safety. Traditionally this surgery was done as a two-stage procedure. The aims of this study were (A)to describe the single - surgical procedure of the OPL; and (B)To present data on potential risks and benefits with sssessment of clinical and functional outcomes at follow up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidrug resistance (MDR) occurs in prostate cancer, and this happens when the cancer cells resist chemotherapeutic drugs by pumping them out of the cells. MDR inhibitors such as cyclosporin A (CsA) can stop the pumping and enhance the drugs accumulated in the cells. The cellular drug accumulation is monitored using a microfluidic chip mounted on a single cell bioanalyzer. This equipment has been developed to measure accumulation of drugs such as doxorubicin (DOX) and fluorescently labeled paclitaxel (PTX) in single prostate cancer cells. The inhibition of drug efflux on the same prostate cell was examined in drug-sensitive and drug-resistant cells. Accumulation of these drug molecules was not found in the MDR cells, PC-3 RX-DT2R cells. Enhanced drug accumulation was observed only after treating the MDR cell in the presence of 5 μM of CsA as the MDR inhibitor. We envision this monitoring of the accumulation of fluorescent molecules (drug or fluorescent molecules), if conducted on single patient cancer cells, can provide information for clinical monitoring of patients undergoing chemotherapy in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally assumed that influence of the red blood cells (RBCs) is predominant in blood rheology. The healthy RBCs are highly deformable and can thus easily squeeze through the smallest capillaries having internal diameter less than their characteristic size. On the other hand, RBCs infected by malaria or other diseases are stiffer and so less deformable. Thus it is harder for them to flow through the smallest capillaries. Therefore, it is very important to critically and realistically investigate the mechanical behavior of both healthy and infected RBCs which is a current gap in knowledge. The motion and the steady state deformed shape of the RBCs depend on many factors, such as the geometrical parameters of the capillary through which blood flows, the membrane bending stiffness and the mean velocity of the blood flow. In this study, motion and deformation of a single two-dimensional RBC in a stenosed capillary is explored by using smoothed particle hydrodynamics (SPH) method. An elastic spring network is used to model the RBC membrane, while the RBC's inside fluid and outside fluid are treated as SPH particles. The effect of RBC's membrane stiffness (kb), inlet pressure (P) and geometrical parameters of the capillary on the motion and deformation of the RBC is studied. The deformation index, RBC's mean velocity and the cell membrane energy are analyzed when the cell passes through the stenosed capillary. The simulation results demonstrate that the kb, P and the geometrical parameters of the capillary have a significant impact on the RBCs' motion and deformation in the stenosed section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Besides the elastic stiffness, the relaxation behavior of single living cells is also of interest of various researchers when studying cell mechanics. It is hypothesized that the relaxation response of the cells is governed by both intrinsic viscoelasticity of the solid phase and fluid-solid interactions mechanisms. There are a number of mechanical models have been developed to investigate the relaxation behavior of single cells. However, there is lack of model enable to accurately capture both of the mechanisms. Therefore, in this study, the porohyperelastic (PHE) model, which is an extension of the consolidation theory, combined with inverse Finite Element Analysis (FEA) technique was used at the first time to investigate the relaxation response of living chondrocytes. This model was also utilized to study the dependence of relaxation behavior of the cells on strain-rates. The stress-relaxation experiments under the various strain-rates were conducted with the Atomic Force Microscopy (AFM). The results have demonstrated that the PHE model could effectively capture the stress-relaxation behavior of the living chondrocytes, especially at intermediate to high strain-rates. Although this model gave some errors at lower strain-rates, its performance was acceptable. Therefore, the PHE model is properly a promising model for single cell mechanics studies. Moreover, it has been found that the hydraulic permeability of living chondrocytes reduced with decreasing of strain-rates. It might be due to the intracellular fluid volume fraction and the fluid pore pressure gradients of chondrocytes were higher when higher strain-rates applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Improved survival for men with prostate cancer has led to increased attention to factors influencing quality of life (QOL). As protein levels of vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) have been reported to be associated with QOL in people with cancer, we sought to identify whether single-nucleotide polymorphisms (SNPs) of these genes were associated with QOL in men with prostate cancer. Methods Multiple linear regression of two data sets (including approximately 750 men newly diagnosed with prostate cancer and 550 men from the general population) was used to investigate SNPs of VEGF and IGF-1 (10 SNPs in total) for associations with QOL (measured by the SF-36v2 health survey). Results Men with prostate cancer who carried the minor ‘T’ allele for IGF-1 SNP rs35767 had higher mean Role-Physical scale scores (≥0.3 SD) compared to non-carriers (p < 0.05). While this association was not identified in men from the general population, one IGF-1 SNP rs7965399 was associated with higher mean Bodily Pain scale scores in men from the general population that was not found in men with prostate cancer. Men from the general population who carried the rare ‘C’ allele had higher mean Bodily Pain scale scores (≥0.3 SD) than non-carriers (p < 0.05). Conclusions Through identifying SNPs that are associated with QOL in men with prostate cancer and men from the general population, this study adds to the mapping of complex interrelationships that influence QOL and suggests a role for IGF-I in physical QOL outcomes. Future research may identify biomarkers associated with increased risk of poor QOL that could assist in the provision of pre-emptive support for those identified at risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canonical single-stranded DNA-binding proteins (SSBs) from the oligosaccharide/oligonucleotide-binding (OB) domain family are present in all known organisms and are critical for DNA replication, recombination and repair. The SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus (SsoSSB) has a ‘simple’ domain organization consisting of a single DNA-binding OB fold coupled to a flexible C-terminal tail, in contrast with other SSBs in this family that incorporate up to four OB domains. Despite the large differences in the domain organization within the SSB family, the structure of the OB domain is remarkably similar all cellular life forms. However, there are significant differences in the molecular mechanism of ssDNA binding. We have determined the structure of the SsoSSB OB domain bound to ssDNA by NMR spectroscopy. We reveal that ssDNA recognition is modulated by base-stacking of three key aromatic residues, in contrast with the OB domains of human RPA and the recently discovered human homologue of SsoSSB, hSSB1. We also demonstrate that SsoSSB binds ssDNA with a footprint of five bases and with a defined binding polarity. These data elucidate the structural basis of DNA binding and shed light on the molecular mechanism by which these ‘simple’ SSBs interact with ssDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses three different ways of applying the single-objective binary genetic algorithm into designing the wind farm. The introduction of different applications is through altering the binary encoding methods in GA codes. The first encoding method is the traditional one with fixed wind turbine positions. The second involves varying the initial positions from results of the first method, and it is achieved by using binary digits to represent the coordination of wind turbine on X or Y axis. The third is the mixing of the first encoding method with another one, which is by adding four more binary digits to represent one of the unavailable plots. The goal of this paper is to demonstrate how the single-objective binary algorithm can be applied and how the wind turbines are distributed under various conditions with best fitness. The main emphasis of discussion is focused on the scenario of wind direction varying from 0° to 45°. Results show that choosing the appropriate position of wind turbines is more significant than choosing the wind turbine numbers, considering that the former has a bigger influence on the whole farm fitness than the latter. And the farm has best performance of fitness values, farm efficiency, and total power with the direction between 20°to 30°.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional theory (DFT) calculations were performed to study the structural, mechanical, electrical, optical properties, and strain effects in single-layer sodium phosphidostannate(II) (NaSnP). We find the exfoliation of single-layer NaSnP from bulk form is highly feasible because the cleavage energy is comparable to graphite and MoS2. In addition, the breaking strain of the NaSnP monolayer is comparable to other widely studied 2D materials, indicating excellent mechanical flexibility of 2D NaSnP. Using the hybrid functional method, the calculated band gap of single-layer NaSnP is close to the ideal band gap of solar cell materials (1.5 eV), demonstrating great potential in future photovoltaic application. Furthermore, strain effect study shows that a moderate compression (2%) can trigger indirect-to-direct gap transition, which would enhance the ability of light absorption for the NaSnP monolayer. With sufficient compression (8%), the single-layer NaSnP can be tuned from semiconductor to metal, suggesting great applications in nanoelectronic devices based on strain engineering techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose There are no published studies on the parameterisation and reliability of the single-leg stance (SLS) test with inertial sensors in stroke patients. Purpose: to analyse the reliability (intra-observer/inter-observer) and sensitivity of inertial sensors used for the SLS test in stroke patients. Secondary objective: to compare the records of the two inertial sensors (trunk and lumbar) to detect any significant differences in the kinematic data obtained in the SLS test. Methods Design: cross-sectional study. While performing the SLS test, two inertial sensors were placed at lumbar (L5-S1) and trunk regions (T7–T8). Setting: Laboratory of Biomechanics (Health Science Faculty - University of Málaga). Participants: Four chronic stroke survivors (over 65 yrs old). Measurement: displacement and velocity, Rotation (X-axis), Flexion/Extension (Y-axis), Inclination (Z-axis); Resultant displacement and velocity (V): RV=(Vx2+Vy2+Vz2)−−−−−−−−−−−−−−−−−√ Along with SLS kinematic variables, descriptive analyses, differences between sensors locations and intra-observer and inter-observer reliability were also calculated. Results Differences between the sensors were significant only for left inclination velocity (p = 0.036) and extension displacement in the non-affected leg with eyes open (p = 0.038). Intra-observer reliability of the trunk sensor ranged from 0.889-0.921 for the displacement and 0.849-0.892 for velocity. Intra-observer reliability of the lumbar sensor was between 0.896-0.949 for the displacement and 0.873-0.894 for velocity. Inter-observer reliability of the trunk sensor was between 0.878-0.917 for the displacement and 0.847-0.884 for velocity. Inter-observer reliability of the lumbar sensor ranged from 0.870-0.940 for the displacement and 0.863-0.884 for velocity. Conclusion There were no significant differences between the kinematic records made by an inertial sensor during the development of the SLS testing between two inertial sensors placed in the lumbar and thoracic regions. In addition, inertial sensors. Have the potential to be reliable, valid and sensitive instruments for kinematic measurements during SLS testing but further research is needed.