935 resultados para Simulation-Numerical


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A numerical analysis of a quantum directional coupler based on Pi-shaped electron waveguides is presented with use of the scattering-matrix method. After the optimization of the device parameters, uniform output for the two output ports and high directivity are obtained within a wide range of the electron momenta. The electron transfer in the device is found more efficient than that in the previously proposed structures. The study of the shape-dependence of transmission for the device shows that the device structure with smooth boundaries exhibits a much better performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A two-dimensional quantum model based on the solution of Schrodinger and Poisson equations is first presented for In0.52Al0.48As/In0.53Ga0.47As/InP HEMT. According to the model, the two-dimensional distributions of electron density and transverse electric field in the channel of InAlAs/InGaAs HEMT are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The motion of a single bubble rising freely in quiescent non-Newtonian viscous fluids was investigated experimentally and computationally. The non-Newtonian effects in the flow of viscous inelastic fluids are modeled by the Carreau theological model. An improved level set approach for computing the incompressible two-phase flow with deformable free interface is used. The control volume formulation with the SIMPLEC algorithm incorporated is used to solve the governing equations on a staggered Eulerian grid. The simulation results demonstrate that the algorithm is robust for shear-thinning liquids with large density (rho(1)/rho(g) up to 10(3)) and high viscosity (eta(1)/eta(g) up to 10(4)). The comparison of the experimental measurements of terminal bubble shape and velocity with the computational results is satisfactory. It is shown that the local change in viscosity around a bubble greatly depends on the bubble shape and the zero-shear viscosity of non-Newtonian shear-thinning liquids. The shear-rate distribution and velocity fields are used to elucidate the formation of a region of large viscosity at the rear of a bubble as a result of the rather stagnant flow behind the bubble. The numerical results provide the basis for further investigations, such as the numerical simulation of viscoelastic fluids. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A direct numerical simulation of the shock/turbulent boundary layer interaction flow in a supersonic 24-degree compression ramp is conducted with the free stream Mach number 2.9. The blow-and-suction disturbance in the upstream wall boundary is used to trigger the transition. Both the mean wall pressure and the velocity profiles agree with those of the experimental data, which validates the simulation. The turbulent kinetic energy budget in the separation region is analyzed. Results show that the turbulent production term increases fast in the separation region, while the turbulent dissipation term reaches its peak in the near-wall region. The turbulent transport term contributes to the balance of the turbulent conduction and turbulent dissipation. Based on the analysis of instantaneous pressure in the downstream region of the mean shock and that in the separation bubble, the authors suggest that the low frequency oscillation of the shock is not caused by the upstream turbulent disturbance, but rather the instability of separation bubble.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently a new method for simulating the thermal loading on pistons of diesel engines was reported. The spatially shaped high power laser is employed as the heat source, and some preliminary experimental and numerical work was carried out. In this paper, a further effort was made to extend this simulation method to some other important engine parts such as cylinder heads. The incident Gaussian beam was transformed into concentric multi-circular patterns of specific intensity distributions, with the aid of diffractive optical elements (DOEs). By incorporating the appropriate repetitive laser pulses, the designed transient temperature fields and thermal loadings in the engine parts could be simulated. Thermal-structural numerical models for pistons and cylinder heads were built to predict the transient temperature and thermal stress. The models were also employed to find the optimal intensity distributions of the transformed laser beam that could produce the target transient temperature fields. Comparison of experimental and numerical results demonstrated that this systematic approach is effective in simulating the thermal loading on the engine parts. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A modeling study is conducted to investigate the plasma flow and heat transfer characteristics of low-power (kW class) arc-heated thrusters (arcjets) with 2:1 hydrogen/nitrogen to simulate decomposed hydrazine as the propellant. The all-speed SIMPLE algorithm is employed to solve the governing equations, which take into account the effects of compressibility, the Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. Typical computed results about the temperature, velocity and Mach number distributions within arcjet thruster are presented for the case with arc current of 9 A and inlet stagnant pressure of 3.3×105 Pa to show the flow and heat transfer characteristics. It is found that the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appearing near the cathode tip, and the flow transition from the subsonic to supersonic regime occurs within the constrictor region. The effect of gas viscosity on the plasma flow within arcjet thruster is examined by an additional numerical test using artificially reduced values of gas viscosity. The test results show that the gas viscosity appreciably affects the plasma flow and the performance of the arcjet thruster for the cases with the hydrazine or hydrogen as the propellant. The integrated axial Lorentz force in the thruster nozzle is also calculated and compared with the thrust force of the arcjet thruster. It is found that the integrated axial Lorentz force is much smaller than the thrust force for the low-power arcjet thruster. Modeling results for the NASA 1-kW class arcjet thruster with simulated hydrazine as the propellant are found to be reasonably consistent with available experimental data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to deal with the complicated relationships among the variables of the reactive extrusion process for activated anionic polymerization, a three-dimensional equivalent model of closely intermeshing co-rotating twin screw extruders was established. Then the numerical computation expressions of the monomer concentration, the monomer conversion, the average molecular weight and the fluid viscosity were deduced, and the numerical simulation of the reactive extrusion process of Styrene was carried out. At last, our simulated results were compared with Michaeli's simulated results and experimental results. (C) 2007 Elsevier B.V. All rights reserved

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gelatin is widely used in food, pharmaceutical, and photographic industries due to the coil-helix transition, whereas the structural inhomogeneity considerably affects its essential properties closely connecting with the industrial applications. The spatially structural inhomogeneity of the gelatin caused by the uneven and unstable temperature field is analyzed by the finite element method during the cooling-induced coil-helix transition process. The helix conversion and the crosslinking density as functions of time and spatial grid are calculated by the incremental method. A length distribution density function is introduced to describe the continuous length distributions of two kinds of triple helices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To analyze the complicated relationships among the variables during the reactive extrusion process of polyamide 6 (PA6), and then control the chemical reaction and the material structures, the process of continuous polymerization of caprolactam into PA6 in a closely intermeshing co-rotating twin screw extruder was simulated by means of the finite volume method, and the influences of three key processing parameters on the reactive extrusion process were discussed. The simulated results of an example were in good agreement with the experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To simulate the deformation and the fracture of gradual multi-fiber-reinforced matrix composites, a numerical simulation method for the mesoscopic mechanical behaviors was developed on the basis of the finite element and the Monte Carlo methods. The results indicate that the strength of a composite increases if the variability of statistical fiber strengths is decreased.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ori-in of the radial sand ridges (RSRs) in the southern Yellow Sea has been a controversial problem since they were discovered in the early 1960s. To resolve the problem, two key questions need to be answered: (1) was the radial tidal current field in the RSR area generated by the submarine topography, or (2) did it exist before the RSRs occurred? In this study, the M-2 tide and tidal currents in the RSR area were simulated with a two-dimensional tidal model using a flat bottom and a shelving slope topography, the results being then compared with the field data. It is demonstrated that the radial tidal current field in the southern Yellow Sea is independent of bottom topography, and may thus be the controlling factor generating the RSRs. The radial tidal current field probably existed before the RSRs were formed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A three-dimensional ocean circulation model, called Princeton Ocean Model (POM), is employed to simulate tides and tidal currents in Liaodong Bay. The nested grid technique is adopted to improve the computation precision. Computed harmonic constants of M-1, M-2 tides at five tidal gauge stations and surface elevations at two oil platforms are compared with those observed, and show good agreements with them. Based on the calculated results, the co-amplitude and co-phase tag lines of nil and M-2 tidal constituents, the residual current field of M-2 constituent, tidal form, tidal Current ellipse and the moving style of tidal current are given. It is found that diurnal tidal constituents have no amphidromic point whereas semi-diurnal constituents have one in the region of interest. Meanwhile, some meaningful results are concluded and presented, which are conducive to a thorough knowledge of the characteristics of tides and tidal currents in the Liaodong Bay.