908 resultados para Simulation in robotcs
Resumo:
Full Paper: The phase, behavior of A-B-random copolymer/C-homopolymer, blends with special interaction was studied by a. Monte, Carlo simulation in two dimensions. The interaction between I segment A and segment C was repulsive, whereas it was attractive between segment B and segment C. The simulation results showed that the blend became two large co-continuous phase domains at lower segment-B component compositions, indicating that the blend showed spinodal decomposition. With an increase of the segment-B component, the miscibility between the copolymer,and the polymer was gradually improved up to being miscible. In addition, it was found that segment B tended to move to the surface of the copolymer phase in the case of a lower component of segment B. On the other hand, if was observed that the average, end-to-end distances ((h) over bar) for both copolymer and polymer changed slowly with increasing segment-B component of the copolymer up to 40%, thereafter they increased considerably with increasing segment B component. Moreover, it was found that the (h) over bar of the copolymer was obviously shorter than that of the homopolymer for the segment-B composition, region from 0% to 80%. Finally, a, phase diagram showing I phase and - II phase regions under the condition of constant-temperature is presented.
Resumo:
The mixed layer depth (MLD) in the upper ocean is an important physical parameter for describing the upper ocean mixed layer. We analyzed several major factors influencing the climatological mixed layer depth (CMLD), and established a numerical simulation in the South China Sea (SCS) using the Regional Ocean Model System (ROMS) with a high-resolution (1/12A degrees x1/12A degrees) grid nesting method and 50 vertical layers. Several ideal numerical experiments were tested by modifying the existing sea surface boundary conditions. Especially, we analyzed the sensitivity of the results simulated for the CMLD with factors of sea surface wind stress (SSWS), sea surface net heat flux (SSNHF), and the difference between evaporation and precipitation (DEP). The result shows that of the three factors that change the depth of the CMLD, SSWS is in the first place, when ignoring the impact of SSWS, CMLD will change by 26% on average, and its effect is always to deepen the CMLD; the next comes SSNHF (13%) for deepening the CMLD in October to January and shallowing the CMLD in February to September; and the DEP comes in the third (only 2%). Moreover, we analyzed the temporal and spatial characteristics of CMLD and compared the simulation result with the ARGO observational data. The results indicate that ROMS is applicable for studying CMLD in the SCS area.
Resumo:
We have implemented a large-scale classical molecular dynamics simulation at constant temperature to provide a theoretical insight into the results of a recently performed experiment on the monolayer and multi-layer formations of molecular films on the Si(100) reconstructed dimerized surface. Our simulation has successfully reproduced all of the morphologies observed on the monolayer film by this experiment. We have obtained the formation of both c(4 4) and c(4 3) structures of the molecules and have also obtained phase transitions of the former into the latter.
Resumo:
When designing a new passenger ship or modifiying an existing design, how do we ensure that the proposed design is safe from an evacuation point of view? In the building and aviation industries, computer based evacuation models are being used to tackle similar issues. In these industries, the traditonal restrictive prescriptive approach to design is making way for performance based design methodologies using risk assessment and computer simulation. In the maritime industry, ship evacuation models off the promise to quickly and efficiently bring these considerations into the design phase, while the ship is "on the drawing board". This paper describes the development of evacuation models with applications to passenger ships and further discusses issues concerning data requirements and validation.
Resumo:
When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the number of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of heat and smoke and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033
Resumo:
FEA and CFD analysis is becoming ever more complex with an emerging demand for simulation software technologies that can address ranges of problems that involve combinations of interactions amongst varying physical phenomena over a variety of time and length scales. Computation modelling of such problems requires software technologies that enable the representation of these complex suites of 'physical' interactions. This functionality requires the structuring of simulation modules for specific physical phemonmena so that the coupling can be effectiely represented. These 'multi-physics' and 'multi-scale' computations are very compute intensive and so the simulation software must operate effectively in parallel if it is to be used in this context. Of course the objective of 'multi-physics' and 'multi-scale' simulation is the optimal design of engineered systems so optimistation is an important feature of such classes of simulation. In this presentation, a multi-disciplinary approach to simulation based optimisation is described with some key examples of application to challenging engineering problems.
Resumo:
This paper concerns a preliminary numerical simulation study of the evacuation of the World Trade Centre North Tower on 11 September 2001 using the buildingEXODUS evacuation simulation software. The analysis makes use of response time data derived from a study of survivor accounts appearing in the public domain. While exact geometric details of the building were not available for this study, the building geometry was approximated from descriptions available in the public domain. The study attempts to reproduce the events of 11 September 2001 and pursue several ‘what if’ questions concerning the evacuation. In particular, the study explores the likely outcome had a single staircase survived in tact from top to bottom.
Resumo:
The domain decomposition method is directed to electronic packaging simulation in this article. The objective is to address the entire simulation process chain, to alleviate user interactions where they are heavy to mechanization by component approach to streamline the model simulation process.
Resumo:
In this paper a methodology for the application of computer simulation to the evacuation certification of aircraft is suggested. The methodology suggested here involves the use of computer simulation, historic certification data, component testing and full-scale certification trials. The proposed methodology sets out a protocol for how computer simulation should be undertaken in a certification environment and draws on experience from both the marine and building industries. Along with the suggested protocol, a phased introduction of computer models to certification is suggested. Given the sceptical nature of the aviation community regarding any certification methodology change in general, this would involve as a first step the use of computer simulation in conjunction with full-scale testing. The computer model would be used to reproduce a probability distribution of likely aircraft performance under current certification conditions and in addition, several other more challenging scenarios could be developed. The combination of full-scale trial, computer simulation (and if necessary component testing) would provide better insight into the actual performance capabilities of the aircraft by generating a performance probability distribution or performance envelope rather than a single datum. Once further confidence in the technique is established, the second step would only involve computer simulation and component testing. This would only be contemplated after sufficient experience and confidence in the use of computer models have been developed. The third step in the adoption of computer simulation for certification would involve the introduction of several scenarios based on for example exit availability instructed by accident analysis. The final step would be the introduction of more realistic accident scenarios into the certification process. This would require the continued development of aircraft evacuation modelling technology to include additional behavioural features common in real accident scenarios.
Proposed methodology for the use of computer simulation to enhance aircraft evacuation certification
Resumo:
In this paper a methodology for the application of computer simulation to evacuation certification of aircraft is suggested. This involves the use of computer simulation, historic certification data, component testing, and full-scale certification trials. The methodology sets out a framework for how computer simulation should be undertaken in a certification environment and draws on experience from both the marine and building industries. In addition, a phased introduction of computer models to certification is suggested. This involves as a first step the use of computer simulation in conjunction with full-scale testing. The combination of full-scale trial, computer simulation (and if necessary component testing) provides better insight into aircraft evacuation performance capabilities by generating a performance probability distribution rather than a single datum. Once further confidence in the technique is established the requirement for the full-scale demonstration could be dropped. The second step in the adoption of computer simulation for certification involves the introduction of several scenarios based on, for example, exit availability, instructed by accident analysis. The final step would be the introduction of more realistic accident scenarios. This would require the continued development of aircraft evacuation modeling technology to include additional behavioral features common in real accident scenarios.
Resumo:
This paper provides an overview of the developing needs for simulation software technologies for the computational modelling of problems that involve combinations of interactions amongst varying physical phenomena over a variety of time and space scales. Computational modelling of such problems requires software tech1nologies that enable the mathematical description of the interacting physical phenomena together with the solution of the resulting suites of equations in a numerically consistent and compatible manner. This functionality requires the structuring of simulation modules for specific physical phenomena so that the coupling can be effectively represented. These multi-physics and multi-scale computations are very compute intensive and the simulation software must operate effectively in parallel if it is to be used in this context. An approach to these classes of multi-disciplinary simulation in parallel is described, with some key examples of application to2 challenging engineering problems.
Resumo:
A new contactless pneumatic microfeeder based on distributed manipulation is proposed. By cooperation of dynamically programmable microactuators, the part to be conveyed floats over an air cushion and is moved to the desired location with the desired orientation. CFD simulations are used to test the validity of the proposed concept and refine the design of the microactuators
Resumo:
Evaluating ship layout for human factors (HF) issues using simulation software such as maritimeEXODUS can be a long and complex process. The analysis requires the identification of relevant evaluation scenarios; encompassing evacuation and normal operations; the development of appropriate measures which can be used to gauge the performance of crew and vessel and finally; the interpretation of considerable simulation data. In this paper we present a systematic and transparent methodology for assessing the HF performance of ship design which is both discriminating and diagnostic.