978 resultados para Short-text clustering
Resumo:
With the advent of cheaper and faster DNA sequencing technologies, assembly methods have greatly changed. Instead of outputting reads that are thousands of base pairs long, new sequencers parallelize the task by producing read lengths between 35 and 400 base pairs. Reconstructing an organism’s genome from these millions of reads is a computationally expensive task. Our algorithm solves this problem by organizing and indexing the reads using n-grams, which are short, fixed-length DNA sequences of length n. These n-grams are used to efficiently locate putative read joins, thereby eliminating the need to perform an exhaustive search over all possible read pairs. Our goal was develop a novel n-gram method for the assembly of genomes from next-generation sequencers. Specifically, a probabilistic, iterative approach was utilized to determine the most likely reads to join through development of a new metric that models the probability of any two arbitrary reads being joined together. Tests were run using simulated short read data based on randomly created genomes ranging in lengths from 10,000 to 100,000 nucleotides with 16 to 20x coverage. We were able to successfully re-assemble entire genomes up to 100,000 nucleotides in length.
Resumo:
In this work electrophoretically mediated micro-analysis (EMMA) is used in conjunction with short end injection to improve the in-capillary Jaffé assay for creatinine. Key advances over prior work include (i) using simulation to ensure intimate overlap of reagent plugs, (ii) using OH- to drive the reaction, (iii) using short-end injection to minimize analysis time and in-line product degradation. The potential-driven overlapping time with the EMMA approach, as well as the borate buffer background electrolyte (BGE) concentration and pH are optimized with the short end approach. The best conditions for short-end analyses would not have been predicted by the prior long end work, owing to a complex interplay of separation time and product degradation rates. Raw peak areas and flow-adjusted peak areas for the Jaffé reaction product (at 505 nm) are used to assess the sensitivity of the short-end EMMA approach. Optimal overlap conditions depend heavily on local conductivity differences within the reagent zone(s), as these differences cause dramatic voltage field differences, which effect reagent overlap dynamics. Simul 5.0, a dynamic simulation program for capillary electrophoresis (CE) systems, is used to understand the ionic boundaries and profiles that give rise to the experimentally obtained data for EMMA analysis. Overall, fast migration of hydroxide ions from the picrate zone makes difficult reagent overlap. In addition, the challenges associated with the simultaneous overlapping of three reagent zones are considered, and experimental results validate the predictions made by the simulation. With one set of “optimized” conditions including OH- (253 mM) as the third reagent zone the response was linear with creatinine concentration (R2 = 0.998) and reproducible over the clinically relevant range (0.08 to 0.1 mM) of standard creatinine concentrations. An LOD (S/N = 3) of 0.02 mM and LOQ (S/N=10) of 0.08 mM were determined. A significant improvement (43%) in assay sensitivity was obtained compared to prior work that considered only two reagents in the overlap.
Resumo:
Higher education has a responsibility to educate a democratic citizenry and recent research indicates civic engagement is on the decline in the United States. Through a mixed methodological approach, I demonstrate that the potential exists for well structured short-term international service-learning programming to develop college students’ civic identities. Quantitative analysis of questionnaire data, collected from American college students immediately prior to their participation in a short-term service-learning experience in Northern Ireland and again upon their return to the United States, revealed increases in civic accountability, political efficacy, justice oriented citizenship, and service-learning. Subsequent qualitative analysis of interview transcripts, student journals, and field notes suggested that facilitated critical reflection before, during, and after the experience promoted transformational learning. Emergent themes included: (a) responsibilities to others, (b) the value of international service-learning, (c) crosspollination of ideas, (d) stepping outside the daily routine to facilitate divergent thinking, and (e) the necessity of precursory thinking for sustaining transformations in thinking. The first theme, responsibilities to others, was further divided into subthemes of thinking beyond oneself, raising awareness of responsibility to others, and voting responsibly.
Resumo:
This thesis uses Sergei Eisenstein’s filmic theories of montage to examine the modernist American short story cycle, a genre of independent short stories that work together to create a larger and interrelated whole. Similar to the shot-by-shot editing process of montage, the story cycle builds its intertextual meaning story-by-story from an aggregate of abrupt narrative transitions and juxtapositions. Eisenstein famously felt that montage, the editing together of film fragments, was not a process of linkage, but of collision –each radically different shot in a film should crash into the next shot, until audience members were intellectually provoked into synthesizing these collisions through dialectical processes. I offer montage as an interpretive strategy for negotiating the narrative collisions in story cycles such as Sherwood Anderson’s Winesburg, Ohio, William Faulkner’s Go Down, Moses, and Eudora Welty’s The Golden Apples. For Go Down, Moses, I argue that Eisenstein’s politically rendered “montage of attractions” provides a template for investigating the shock tactics behind Faulkner’s chronologically and racially entangled stories of whites and African Americans. For The Golden Apples, I consider the opposites and doubles in Welty’s fiction with Eisenstein’s similar belief in the “opposing passions” of the world. Not only, then, do I suggest that the modernist story cycle bears a cinematic influence, but I also offer Eisenstein’s theories of montage and collision as a heuristic for formal, thematic, and even political patterns in a genre infamous for its resistance to definition and classification.
Resumo:
The short, portable mental status questionnaire (SPMSQ) developed by Pfeiffer has several advantages over previous short instruments designed to assess the intellectual functioning of older adults. It is based upon data from both institutionalized and community-dwelling elderly. Although Pfeiffer a four-group classification, he used to groups in his initial validation study: (a) intact/mildly impaired, and (b) moderately/severely impaired. The present study compared clinicians' ratings with those based upon the SPMSQ scores, and examined the validity of the four-group classification. The sample included 181 subjects from seven intermediate care facilities and nine home-care agencies. All were assessed by the OARS questionnaire, which includes the SPMSQ Three discriminant analyses were performed with three different criteria, for two-group, three-group, and four-group models. Results indicated that the two-group model (intact/mildly impaired and moderately/severely impaired) permitted significant discrimination. The four-group model, however, gave less distinct results. In particular, patients who were mildly intellectually impaired could not be clearly distinguished from those who were intact and from those who were moderately impaired. The three-group model (minimally, moderately, severely impaired) seemed to offer the best compromise between the gross dichotomy of the original two-model system and the less accurate four category system.
Resumo:
The mental health needs of older adults remain largely unmet. This gap is due, in part, to a lack of adequately trained professionals and paraprofessionals. The sixteen-item quiz presented in this article has two purposes: 1) to present an overview of salient empirical and theoretical issues in the area of mental health and aging, and 2) to promote discussion of these topics. Each item is documented with supporting literature. In addition, average scores, item difficulties, and item-to-total correlations are presented for two groups of undergraduate students.
Measurement Properties of the Short Multi-Dimensional Observation Scale for Elderly Subjects (MOSES)
Resumo:
This study evaluated the five-factor measurement model of the abbreviated Multidimensional Observation Scale for Elderly Subjects (MOSES), originally proposed by Pruchno, Kleban, and Resch in 1988. Modifications of the five-factor model were examined and evaluated with regard to their practical significance. A confirmatory second-order factor analysis was performed to examine whether the correlations among the first-order factors were adequately accounted for by a global dysfunction factor. Findings indicated that the proposed measurement model was replicated adequately. Although post hoc modifications resulted in significant improvements in overall model fit, the minor parameters had only a trivial influence on the major parameters of the baseline model. Results from the second-order factor analysis showed that a global dysfunc tion factor accounted adequately for the intercorrelations among the first-order factors.
Resumo:
High density oligonucleotide expression arrays are a widely used tool for the measurement of gene expression on a large scale. Affymetrix GeneChip arrays appear to dominate this market. These arrays use short oligonucleotides to probe for genes in an RNA sample. Due to optical noise, non-specific hybridization, probe-specific effects, and measurement error, ad-hoc measures of expression, that summarize probe intensities, can lead to imprecise and inaccurate results. Various researchers have demonstrated that expression measures based on simple statistical models can provide great improvements over the ad-hoc procedure offered by Affymetrix. Recently, physical models based on molecular hybridization theory, have been proposed as useful tools for prediction of, for example, non-specific hybridization. These physical models show great potential in terms of improving existing expression measures. In this paper we demonstrate that the system producing the measured intensities is too complex to be fully described with these relatively simple physical models and we propose empirically motivated stochastic models that compliment the above mentioned molecular hybridization theory to provide a comprehensive description of the data. We discuss how the proposed model can be used to obtain improved measures of expression useful for the data analysts.
Resumo:
BACKGROUND: High intercoder reliability (ICR) is required in qualitative content analysis for assuring quality when more than one coder is involved in data analysis. The literature is short of standardized procedures for ICR procedures in qualitative content analysis. OBJECTIVE: To illustrate how ICR assessment can be used to improve codings in qualitative content analysis. METHODS: Key steps of the procedure are presented, drawing on data from a qualitative study on patients' perspectives on low back pain. RESULTS: First, a coding scheme was developed using a comprehensive inductive and deductive approach. Second, 10 transcripts were coded independently by two researchers, and ICR was calculated. A resulting kappa value of .67 can be regarded as satisfactory to solid. Moreover, varying agreement rates helped to identify problems in the coding scheme. Low agreement rates, for instance, indicated that respective codes were defined too broadly and would need clarification. In a third step, the results of the analysis were used to improve the coding scheme, leading to consistent and high-quality results. DISCUSSION: The quantitative approach of ICR assessment is a viable instrument for quality assurance in qualitative content analysis. Kappa values and close inspection of agreement rates help to estimate and increase quality of codings. This approach facilitates good practice in coding and enhances credibility of analysis, especially when large samples are interviewed, different coders are involved, and quantitative results are presented.
Resumo:
We present studies of the spatial clustering of inertial particles embedded in turbulent flow. A major part of the thesis is experimental, involving the technique of Phase Doppler Interferometry (PDI). The thesis also includes significant amount of simulation studies and some theoretical considerations. We describe the details of PDI and explain why it is suitable for study of particle clustering in turbulent flow with a strong mean velocity. We introduce the concept of the radial distribution function (RDF) as our chosen way of quantifying inertial particle clustering and present some original works on foundational and practical considerations related to it. These include methods of treating finite sampling size, interpretation of the magnitude of RDF and the possibility of isolating RDF signature of inertial clustering from that of large scale mixing. In experimental work, we used the PDI to observe clustering of water droplets in a turbulent wind tunnel. From that we present, in the form of a published paper, evidence of dynamical similarity (Stokes number similarity) of inertial particle clustering together with other results in qualitative agreement with available theoretical prediction and simulation results. We next show detailed quantitative comparisons of results from our experiments, direct-numerical-simulation (DNS) and theory. Very promising agreement was found for like-sized particles (mono-disperse). Theory is found to be incorrect regarding clustering of different-sized particles and we propose a empirical correction based on the DNS and experimental results. Besides this, we also discovered a few interesting characteristics of inertial clustering. Firstly, through observations, we found an intriguing possibility for modeling the RDF arising from inertial clustering that has only one (sensitive) parameter. We also found that clustering becomes saturated at high Reynolds number.
Resumo:
During the past decades, tremendous research interests have been attracted to investigate nanoparticles due to their promising catalytic, magnetic, and optical properties. In this thesis, two novel methods of nanoparticle fabrication were introduced and the basic formation mechanisms were studied. Metal nanoparticles and polyurethane nanoparticles were separately fabricated by a short-distance sputter deposition technique and a reactive ion etching process. First, a sputter deposition method with a very short target-substrate distance is found to be able to generate metal nanoparticles on the glass substrate inside a RIE chamber. The distribution and morphology of nanoparticles are affected by the distance, the ion concentration and the process time. Densely-distributed nanoparticles of various compositions are deposited on the substrate surface when the target-substrate distance is smaller than 130mm. It is much less than the atoms’ mean free path, which is the threshold in previous research for nanoparticles’ formation. Island structures are formed when the distance is increased to 510mm, indicating the tendency to form continuous thin film. The trend is different from previously-reported sputtering method for nanoparticle fabrication, where longer distance between the target and the substrate facilitates the formation of nanoparticle. A mechanism based on the seeding effect of the substrate is proposed to interpret the experimental results. Secondly, in polyurethane nanoparticles’ fabrication, a mechanism is put forward based on the microphase separation phenomenon in block copolymer thin film. The synthesized polymers have formed dispersed and continuous phases because of the different properties between segments. With harder mechanical property, the dispersed phase is remained after RIE process while the continuous phase is etched away, leading to the formation of nanoparticles on the substrate. The nanoparticles distribution is found to be affected by the heating effect, the process time and the plasma power. Superhydrophilic property is found on samples with these two types of nanoparticles. The relationship between the nanostructure and the hydrophilicity is studied for further potential applications.
Resumo:
Mobile Mesh Network based In-Transit Visibility (MMN-ITV) system facilitates global real-time tracking capability for the logistics system. In-transit containers form a multi-hop mesh network to forward the tracking information to the nearby sinks, which further deliver the information to the remote control center via satellite. The fundamental challenge to the MMN-ITV system is the energy constraint of the battery-operated containers. Coupled with the unique mobility pattern, cross-MMN behavior, and the large-spanned area, it is necessary to investigate the energy-efficient communication of the MMN-ITV system thoroughly. First of all, this dissertation models the energy-efficient routing under the unique pattern of the cross-MMN behavior. A new modeling approach, pseudo-dynamic modeling approach, is proposed to measure the energy-efficiency of the routing methods in the presence of the cross-MMN behavior. With this approach, it could be identified that the shortest-path routing and the load-balanced routing is energy-efficient in mobile networks and static networks respectively. For the MMN-ITV system with both mobile and static MMNs, an energy-efficient routing method, energy-threshold routing, is proposed to achieve the best tradeoff between them. Secondly, due to the cross-MMN behavior, neighbor discovery is executed frequently to help the new containers join the MMN, hence, consumes similar amount of energy as that of the data communication. By exploiting the unique pattern of the cross-MMN behavior, this dissertation proposes energy-efficient neighbor discovery wakeup schedules to save up to 60% of the energy for neighbor discovery. Vehicular Ad Hoc Networks (VANETs)-based inter-vehicle communications is by now growingly believed to enhance traffic safety and transportation management with low cost. The end-to-end delay is critical for the time-sensitive safety applications in VANETs, and can be a decisive performance metric for VANETs. This dissertation presents a complete analytical model to evaluate the end-to-end delay against the transmission range and the packet arrival rate. This model illustrates a significant end-to-end delay increase from non-saturated networks to saturated networks. It hence suggests that the distributed power control and admission control protocols for VANETs should aim at improving the real-time capacity (the maximum packet generation rate without causing saturation), instead of the delay itself. Based on the above model, it could be determined that adopting uniform transmission range for every vehicle may hinder the delay performance improvement, since it does not allow the coexistence of the short path length and the low interference. Clusters are proposed to configure non-uniform transmission range for the vehicles. Analysis and simulation confirm that such configuration can enhance the real-time capacity. In addition, it provides an improved trade off between the end-to-end delay and the network capacity. A distributed clustering protocol with minimum message overhead is proposed, which achieves low convergence time.