880 resultados para Shape prediction
Resumo:
Pensions together with savings and investments during active life are key elements of retirement planning. Motivation for personal choices about the standard of living, bequest and the replacement ratio of pension with respect to last salary income must be considered. This research contributes to the financial planning by helping to quantify long-term care economic needs. We estimate life expectancy from retirement age onwards. The economic cost of care per unit of service is linked to the expected time of needed care and the intensity of required services. The expected individual cost of long-term care from an onset of dependence is estimated separately for men and women. Assumptions on the mortality of the dependent people compared to the general population are introduced. Parameters defining eligibility for various forms of coverage by the universal public social care of the welfare system are addressed. The impact of the intensity of social services on individual predictions is assessed, and a partial coverage by standard private insurance products is also explored. Data were collected by the Spanish Institute of Statistics in two surveys conducted on the general Spanish population in 1999 and in 2008. Official mortality records and life table trends were used to create realistic scenarios for longevity. We find empirical evidence that the public long-term care system in Spain effectively mitigates the risk of incurring huge lifetime costs. We also find that the most vulnerable categories are citizens with moderate disabilities that do not qualify to obtain public social care support. In the Spanish case, the trends between 1999 and 2008 need to be further explored.
Resumo:
Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted in developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas little has been done to predict the hydrolytic activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES1. The study involves both docking analyses of known substrates to develop predictive models, and molecular dynamics (MD) simulations to reveal the in situ behavior of substrates and products, with particular attention being paid to the influence of their ionization state. The results emphasize some crucial properties of the hCES1 catalytic cavity, confirming that as a trend with several exceptions, hCES1 prefers substrates with relatively smaller and somewhat polar alkyl/aryl groups and larger hydrophobic acyl moieties. The docking results underline the usefulness of the hydrophobic interaction score proposed here, which allows a robust prediction of hCES1 catalysis, while the MD simulations show the different behavior of substrates and products in the enzyme cavity, suggesting in particular that basic substrates interact with the enzyme in their unprotonated form.
Resumo:
An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.
Resumo:
Momentary configurations of long polymers at thermal equilibrium usually deviate from spherical symmetry and can be better described, on average, by a prolate ellipsoid. The asphericity and nature of asphericity (or prolateness) that describe these momentary ellipsoidal shapes of a polymer are determined by specific expressions involving the three principal moments of inertia calculated for configurations of the polymer. Earlier theoretical studies and numerical simulations have established that as the length of the polymer increases, the average shape for the statistical ensemble of random configurations asymptotically approaches a characteristic universal shape that depends on the solvent quality. It has been established, however, that these universal shapes differ for linear, circular, and branched chains. We investigate here the effect of knotting on the shape of cyclic polymers modeled as random isosegmental polygons. We observe that random polygons forming different knot types reach asymptotic shapes that are distinct from the ensemble average shape. For the same chain length, more complex knots are, on average, more spherical than less complex knots.
Resumo:
How are cell morphogenesis and cell cycle coordinated? The fission yeast is a rod-shaped unicellular organism widely used to study how a cell self-organizes in space and time. Here, we discuss recent advances in understanding how the cell acquires and maintains its regular rod shape and uses it to control cell division. The cellular body plan is established by microtubules, which mark antipodal growth zones and medial division. In turn, cellular dimensions are defined by the small GTPase Cdc42 and downstream regulators of vesicle trafficking. Yeast cells then repetitively use their simple rod shape to orchestrate the position and timing of cell division.
Resumo:
DNA in bacterial chromosomes and bacterial plasmids is supercoiled. DNA supercoiling is essential for DNA replication and gene regulation. However, the density of supercoiling in vivo is circa twice smaller than in deproteinized DNA molecules isolated from bacteria. What are then the specific advantages of reduced supercoiling density that is maintained in vivo? Using Brownian dynamics simulations and atomic force microscopy we show here that thanks to physiological DNA-DNA crowding DNA molecules with reduced supercoiling density are still sufficiently supercoiled to stimulate interaction between cis-regulatory elements. On the other hand, weak supercoiling permits DNA molecules to modulate their overall shape in response to physiological changes in DNA crowding. This plasticity of DNA shapes may have regulatory role and be important for the postreplicative spontaneous segregation of bacterial chromosomes.
Resumo:
Cooperation and Working Together (CAWT), the cross border health and social care partnership has been working with the Departments of Health to progress a three year cross border obesity prevention and management project aimed at families. They have been successful in securing funding from the EU INTERREG IVA programme. A planning workshop focussing on this will be held on Friday 26 June 2009.
Resumo:
Review of the book : "What shape is a snowflake?", by I.S. Weidenfeld & Nicholson, London, UK
Resumo:
ABSTRACT: BACKGROUND: Chest pain raises concern for the possibility of coronary heart disease. Scoring methods have been developed to identify coronary heart disease in emergency settings, but not in primary care. METHODS: Data were collected from a multicenter Swiss clinical cohort study including 672 consecutive patients with chest pain, who had visited one of 59 family practitioners' offices. Using delayed diagnosis we derived a prediction rule to rule out coronary heart disease by means of a logistic regression model. Known cardiovascular risk factors, pain characteristics, and physical signs associated with coronary heart disease were explored to develop a clinical score. Patients diagnosed with angina or acute myocardial infarction within the year following their initial visit comprised the coronary heart disease group. RESULTS: The coronary heart disease score was derived from eight variables: age, gender, duration of chest pain from 1 to 60 minutes, substernal chest pain location, pain increases with exertion, absence of tenderness point at palpation, cardiovascular risks factors, and personal history of cardiovascular disease. Area under the receiver operating characteristics curve was of 0.95 with a 95% confidence interval of 0.92; 0.97. From this score, 413 patients were considered as low risk for values of percentile 5 of the coronary heart disease patients. Internal validity was confirmed by bootstrapping. External validation using data from a German cohort (Marburg, n = 774) revealed a receiver operating characteristics curve of 0.75 (95% confidence interval, 0.72; 0.81) with a sensitivity of 85.6% and a specificity of 47.2%. CONCLUSIONS: This score, based only on history and physical examination, is a complementary tool for ruling out coronary heart disease in primary care patients complaining of chest pain.
Resumo:
CONTEXT: Several genetic risk scores to identify asymptomatic subjects at high risk of developing type 2 diabetes mellitus (T2DM) have been proposed, but it is unclear whether they add extra information to risk scores based on clinical and biological data. OBJECTIVE: The objective of the study was to assess the extra clinical value of genetic risk scores in predicting the occurrence of T2DM. DESIGN: This was a prospective study, with a mean follow-up time of 5 yr. SETTING AND SUBJECTS: The study included 2824 nondiabetic participants (1548 women, 52 ± 10 yr). MAIN OUTCOME MEASURE: Six genetic risk scores for T2DM were tested. Four were derived from the literature and two were created combining all (n = 24) or shared (n = 9) single-nucleotide polymorphisms of the previous scores. A previously validated clinic + biological risk score for T2DM was used as reference. RESULTS: Two hundred seven participants (7.3%) developed T2DM during follow-up. On bivariate analysis, no differences were found for all but one genetic score between nondiabetic and diabetic participants. After adjusting for the validated clinic + biological risk score, none of the genetic scores improved discrimination, as assessed by changes in the area under the receiver-operating characteristic curve (range -0.4 to -0.1%), sensitivity (-2.9 to -1.0%), specificity (0.0-0.1%), and positive (-6.6 to +0.7%) and negative (-0.2 to 0.0%) predictive values. Similarly, no improvement in T2DM risk prediction was found: net reclassification index ranging from -5.3 to -1.6% and nonsignificant (P ≥ 0.49) integrated discrimination improvement. CONCLUSIONS: In this study, adding genetic information to a previously validated clinic + biological score does not seem to improve the prediction of T2DM.
Resumo:
BACKGROUND AND PURPOSE: The study aims to assess the recanalization rate in acute ischemic stroke patients who received no revascularization therapy, intravenous thrombolysis, and endovascular treatment, respectively, and to identify best clinical and imaging predictors of recanalization in each treatment group. METHODS: Clinical and imaging data were collected in 103 patients with acute ischemic stroke caused by anterior circulation arterial occlusion. We recorded demographics and vascular risk factors. We reviewed the noncontrast head computed tomographies to assess for hyperdense middle cerebral artery and its computed tomography density. We reviewed the computed tomography angiograms and the raw images to determine the site and degree of arterial occlusion, collateral score, clot burden score, and the density of the clot. Recanalization status was assessed on recanalization imaging using Thrombolysis in Myocardial Ischemia. Multivariate logistic regressions were utilized to determine the best predictors of outcome in each treatment group. RESULTS: Among the 103 study patients, 43 (42%) received intravenous thrombolysis, 34 (33%) received endovascular thrombolysis, and 26 (25%) did not receive any revascularization therapy. In the patients with intravenous thrombolysis or no revascularization therapy, recanalization of the vessel was more likely with intravenous thrombolysis (P = 0·046) and when M1/A1 was occluded (P = 0·001). In this subgroup of patients, clot burden score, cervical degree of stenosis (North American Symptomatic Carotid Endarterectomy Trial), and hyperlipidemia status added information to the aforementioned likelihood of recanalization at the patient level (P < 0·001). In patients with endovascular thrombolysis, recanalization of the vessel was more likely in the case of a higher computed tomography angiogram clot density (P = 0·012), and in this subgroup of patients gender added information to the likelihood of recanalization at the patient level (P = 0·044). CONCLUSION: The overall likelihood of recanalization was the highest in the endovascular group, and higher for intravenous thrombolysis compared with no revascularization therapy. However, our statistical models of recanalization for each individual patient indicate significant variability between treatment options, suggesting the need to include this prediction in the personalized treatment selection.