983 resultados para Shaanxi earthquake


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An evaluation of the seismic hazard in La Hispaniola Island has been carried out, as part of the cooperative project SISMO-HAITI, supported by the Technical University of Madrid (UPM) and developed by several Spanish Universities, the National Observatory of Environment and Vulnerability) ONEV of Haiti, and with contributions from the Puerto Rico Seismic Network (PRSN) and University Seismological Institute of Dominican Republic (ISU). The study was aimed at obtaining results suitable for seismic design purposes. It started with the elaboration of a seismic catalogue for the Hispaniola Island, requiring an exhaustive revision of data reported by more than 20 seismic agencies, apart from these from the PRSN and ISU. The final catalogue contains 96 historical earthquakes and 1690 instrumental events, and it was homogenized to moment magnitude, Mw. Seismotectonic models proposed for the region were revised and a new regional zonation was proposed, taking into account geological andtectonic data, seismicity, focal mechanisms, and GPS observations. In parallel, attenuation models for subduction and crustal zones were revised in previous projects and the most suitable for the Caribbean plate were selected. Then, a seismic hazard analysis was developed in terms of peak ground acceleration, PGA, and spectral accelerations, SA (T), for periods of 0.1, 0.2, 0.5, 1 and 2s, using the Probabilistic Seismic Hazard Assessment (PSHA) methodology. As a result, different hazard maps were obtained for the quoted parameters, together with Uniform Hazard Spectra for Port au Prince and the main cities in the country. Hazard deaggregation was also carried out in these towns, for the target motion given by the PGA and SA (1s) obtained for return periods of 475, 975 and 2475 years. Therefore, the controlling earthquakes for short- and long-period target motions were derived. This study was started a few months after the 2010 earthquake, as a response to an aid request from the Haitian government to the UPM, and the results are available for the definition of the first building code in Haiti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On Wednesday 11th May 2011 at 6:47 pm (local time) a magnitude 5.1 Mw earthquake occurred 6 km northeast of Lorca with a depth of around 2 km. As a consequence of the shallow depth and the small epicentral distance, important damage was produced in several masonry constructions and even led to the collapse of some of them. Pieces of the facades of several buildings fell down onto the sidewalk, being one of the reasons for the killing of a total of 9 people. The objective of this paper is to describe and analyze the failure patterns observed in unreinforced masonry buildings ranging from 3 to 8 floors in height. First, a brief description of the local building practices of masonry buildings is given. Then, the most important failure types of masonry buildings are described and discussed. After that, a more detailed analysis of one particular building is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to evaluate ground shaking characteristics due to surface soil layers in the urban area of Port-au-Prince, short-period ambient noise observation has been performed approximately in a 500x500m grid. The HVSR method was applied to this set of 36 ambient noise measurement points to determine a distribution map of soil predominant periods. This map reveals a general increasing trend in the period values, from the Miocene conglomerates in the northern and southern parts of the town to the central and western zones formed of Pleistocene and Holocene alluvial deposits respectively, where the shallow geological materials that cover the basement increase in thickness. Shorter predominant periods (less than 0.3 s) were found in mountainous and neighbouring zones, where the thickness of sediments is smaller whereas longer periods (greater than 0.5 s) appear in Holocene alluvial fans, where the thickness of sediments is larger. The shallow shear-wave velocity structure have been estimated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. The measurements were carried out at one open space located in Holocene alluvial deposits, using 3 regular pentagonal arrays with 5, 10 and 20m respectively. Reliable dispersion curves were retrieved for frequencies between 4.0 and 14 Hz, with phase velocity values ranging from 420m/s down to 270 m/s. Finally, the average shear-wave velocity of the upper 30 m (VS30) was inverted for characterization of this geological unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On Wednesday 11th May 2011 at 6:47 pm (local time) a magnitude 5.1 Mw earthquake occurred 6 km northeast of Lorca with a depth of around 5 km. As a consequence of the shallow depth and the small epicentral distance, important damage was produced in several masonry constructions and even led to the collapse of one of them. Pieces of the facades of several buildings fell down onto the sidewalk, being one of the reasons for the killing of a total of 9 people. The objective of this paper is to describe and analyze the failure patterns observed in reinforced concrete frame buildings with masonry infill walls ranging from 3 to 8 floors in height. Structural as well as non-structural masonry walls suffered important damage that led to redistributions of forces causing in some cases the failure of columns. The importance of the interaction between the structural frames and the infill panels is analyzed by means of non-linear Finite Element Models. The resulting load levels are compared with the member capacities and the changes of the mechanical properties during the seismic event are described and discussed. In the light of the results obtained the observed failure patterns are explained. Some comments are stated concerning the adequacy of the numerical models that are usually used during the design phase for the seismic analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(This is an excerpt from the content) On May 11 2011 at 1705 hours, a small 4.5 Mw. magnitude earthquake struck the town of Lorca in south-eastern Spain. Other than alarmed citizens, only minor damage to buildings occurred due to this quake. Unfortunately at 1847 hours, a second shock registering a magnitude of 5.1 Mw. and very shallow (just around 2 km under the city) produced the largest seismic catastrophe registered in Spain in the last 120 years. This second shock is commonly referred to as “Lorca’s earthquake” and the following papers describe the context, circumstances and consequences of the event. Spain is a country of moderate seismic hazard in a global context. Before the Lorca earthquake, the most destructive earthquake in modern times was the so-called “Andalusian earthquake” (25th December 1884) that resulted in 750 fatalities and more than 1,500 injuries, reaching X in Mercalli’s intensity scale. Despite the lack of catastrophic events in the last 120 years, Spain has always had a scientific interest in seismic ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The city of Lorca (Spain) was hit on May 11th, 2011, by two consecutive earth-quakes of magnitudes 4.6 and 5.2 Mw, causing casualties and important damage in buildings. Many of the damaged structures were reinforced concrete frames with wide beams. This study quantifies the expected level of damage on this structural type in the case of the Lorca earth-quake by means of a seismic index Iv that compares the energy input by the earthquake with the energy absorption/dissipation capacity of the structure. The prototype frames investigated represent structures designed in two time periods (1994–2002 and 2003–2008), in which the applicable codes were different. The influence of the masonry infill walls and the proneness of the frames to concentrate damage in a given story were further investigated through nonlinear dynamic response analyses. It is found that (1) the seismic index method predicts levels of damage that range from moderate/severe to complete collapse; this prediction is consistent with the observed damage; (2) the presence of masonry infill walls makes the structure very prone to damage concentration and reduces the overall seismic capacity of the building; and (3) a proper hierarchy of strength between beams and columns that guarantees the formation of a strong column-weak beam mechanism (as prescribed by seismic codes), as well as the adoption of counter-measures to avoid the negative interaction between non-structural infill walls and the main frame, would have reduced the level of damage from Iv=1 (collapse) to about Iv=0.5 (moderate/severe damage)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A damage scenario modelling is developed and compared with the damage distribution observed after the 2011 Lorca earthquake. The strong ground motion models considered include five modern ground motion prediction equations (GMPEs) amply used worldwide. Capacity and fragility curves from the Risk-UE project are utilized to model building vulnerability and expected damage. Damage estimates resulting from different combinations of GMPE and capacity/fragility curves are compared with the actual damage scenario, establishing the combination that best explains the observed damage distribution. In addition, some recommendations are proposed, including correction factors in fragility curves in order to reproduce in a better way the observed damage in masonry and reinforce concrete buildings. The lessons learned would contribute to improve the simulation of expected damages due to future earthquakes in Lorca or other regions in Spain with similar characteristics regarding attenuation and vulnerability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After the 2010 Haiti earthquake, that hits the city of Port-au-Prince, capital city of Haiti, a multidisciplinary working group of specialists (seismologist, geologists, engineers and architects) from different Spanish Universities and also from Haiti, joined effort under the SISMO-HAITI project (financed by the Universidad Politecnica de Madrid), with an objective: Evaluation of seismic hazard and risk in Haiti and its application to the seismic design, urban planning, emergency and resource management. In this paper, as a first step for a structural damage estimation of future earthquakes in the country, a calibration of damage functions has been carried out by means of a two-stage procedure. After compiling a database with observed damage in the city after the earthquake, the exposure model (building stock) has been classified and through an iteratively two-step calibration process, a specific set of damage functions for the country has been proposed. Additionally, Next Generation Attenuation Models (NGA) and Vs30 models have been analysed to choose the most appropriate for the seismic risk estimation in the city. Finally in a next paper, these functions will be used to estimate a seismic risk scenario for a future earthquake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Análisis de los factores de vulnerabilidad que mas influencia han tenido en el daño del terremoto de Lorca.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earthquake prediction research has searched for both informational phenomena, those that provide information about earthquake hazards useful to the public, and causal phenomena, causally related to the physical processes governing failure on a fault, to improve our understanding of those processes. Neither informational nor causal phenomena are a subset of the other. I propose a classification of potential earthquake predictors of informational, causal, and predictive phenomena, where predictors are causal phenomena that provide more accurate assessments of the earthquake hazard than can be gotten from assuming a random distribution. Achieving higher, more accurate probabilities than a random distribution requires much more information about the precursor than just that it is causally related to the earthquake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progress in long- and intermediate-term earthquake prediction is reviewed emphasizing results from California. Earthquake prediction as a scientific discipline is still in its infancy. Probabilistic estimates that segments of several faults in California will be the sites of large shocks in the next 30 years are now generally accepted and widely used. Several examples are presented of changes in rates of moderate-size earthquakes and seismic moment release on time scales of a few to 30 years that occurred prior to large shocks. A distinction is made between large earthquakes that rupture the entire downdip width of the outer brittle part of the earth's crust and small shocks that do not. Large events occur quasi-periodically in time along a fault segment and happen much more often than predicted from the rates of small shocks along that segment. I am moderately optimistic about improving predictions of large events for time scales of a few to 30 years although little work of that type is currently underway in the United States. Precursory effects, like the changes in stress they reflect, should be examined from a tensorial rather than a scalar perspective. A broad pattern of increased numbers of moderate-size shocks in southern California since 1986 resembles the pattern in the 25 years before the great 1906 earthquake. Since it may be a long-term precursor to a great event on the southern San Andreas fault, that area deserves detailed intensified study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent discovery of a low-velocity, low-Q zone with a width of 50-200 m reaching to the top of the ductile part of the crust, by observations on seismic guided waves trapped in the fault zone of the Landers earthquake of 1992, and its identification with the shear zone inferred from the distribution of tension cracks observed on the surface support the existence of a characteristic scale length of the order of 100 m affecting various earthquake phenomena in southern California, as evidenced earlier by the kink in the magnitude-frequency relation at about M3, the constant corner frequency for earthquakes with M below about 3, and the sourcecontrolled fmax of 5-10 Hz for major earthquakes. The temporal correlation between coda Q-1 and the fractional rate of occurrence of earthquakes in the magnitude range 3-3.5, the geographical similarity of coda Q-1 and seismic velocity at a depth of 20 km, and the simultaneous change of coda Q-1 and conductivity at the lower crust support the hypotheses that coda Q-1 may represent the activity of creep fracture in the ductile part of the lithosphere occurring over cracks with a characteristic size of the order of 100 m. The existence of such a characteristic scale length cannot be consistent with the overall self-similarity of earthquakes unless we postulate a discrete hierarchy of such characteristic scale lengths. The discrete hierarchy of characteristic scale lengths is consistent with recently observed logarithmic periodicity in precursory seismicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An earthquake of magnitude M and linear source dimension L(M) is preceded within a few years by certain patterns of seismicity in the magnitude range down to about (M - 3) in an area of linear dimension about 5L-10L. Prediction algorithms based on such patterns may allow one to predict approximately 80% of strong earthquakes with alarms occupying altogether 20-30% of the time-space considered. An area of alarm can be narrowed down to 2L-3L when observations include lower magnitudes, down to about (M - 4). In spite of their limited accuracy, such predictions open a possibility to prevent considerable damage. The following findings may provide for further development of prediction methods: (i) long-range correlations in fault system dynamics and accordingly large size of the areas over which different observed fields could be averaged and analyzed jointly, (ii) specific symptoms of an approaching strong earthquake, (iii) the partial similarity of these symptoms worldwide, (iv) the fact that some of them are not Earth specific: we probably encountered in seismicity the symptoms of instability common for a wide class of nonlinear systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This survey of well-documented repeated fault rupture confirms that some faults have exhibited a "characteristic" behavior during repeated large earthquakes--that is, the magnitude, distribution, and style of slip on the fault has repeated during two or more consecutive events. In two cases faults exhibit slip functions that vary little from earthquake to earthquake. In one other well-documented case, however, fault lengths contrast markedly for two consecutive ruptures, but the amount of offset at individual sites was similar. Adjacent individual patches, 10 km or more in length, failed singly during one event and in tandem during the other. More complex cases of repetition may also represent the failure of several distinct patches. The faults of the 1992 Landers earthquake provide an instructive example of such complexity. Together, these examples suggest that large earthquakes commonly result from the failure of one or more patches, each characterized by a slip function that is roughly invariant through consecutive earthquake cycles. The persistence of these slip-patches through two or more large earthquakes indicates that some quasi-invariant physical property controls the pattern and magnitude of slip. These data seem incompatible with theoretical models that produce slip distributions that are highly variable in consecutive large events.