916 resultados para Separation of Control and Observation
Resumo:
Background We analyzed the relationship between cholelithiasis and cancer risk in a network of case-control studies conducted in Italy and Switzerland in 1982-2009. Methods The analyses included 1997 oropharyngeal, 917 esophageal, 999 gastric, 23 small intestinal, 3726 colorectal, 684 liver, 688 pancreatic, 1240 laryngeal, 6447 breast, 1458 endometrial, 2002 ovarian, 1582 prostate, 1125 renal cell, 741 bladder cancers, and 21 284 controls. The odds ratios (ORs) were estimated by multiple logistic regression models. Results The ORs for subjects with history of cholelithiasis compared with those without were significantly elevated for small intestinal (OR = 3.96), prostate (OR = 1.36), and kidney cancers (OR = 1.57). These positive associations were observed ≥10 years after diagnosis of cholelithiasis and were consistent across strata of age, sex, and body mass index. No relation was found with the other selected cancers. A meta-analysis including this and three other studies on the relation of cholelithiasis with small intestinal cancer gave a pooled relative risk of 2.35 [95% confidence interval (CI) 1.82-3.03]. Conclusion In subjects with cholelithiasis, we showed an appreciably increased risk of small intestinal cancer and suggested a moderate increased risk of prostate and kidney cancers. We found no material association with the other cancers considered.
Resumo:
The objective of this work was to evaluate the efficacy of two nematodes, Steinernema feltiae and S. carpocapsae, to control mushroom flies and to evaluate the effect of these treatments on Agaricus bisporus production. Two mushroom cultivation trials were carried out in controlled conditions, in substrate previously infested with the diptera Megaselia halterata and Lycoriella auripila, with two treatments: 106infective juveniles (IJ) per square meter of S. feltiae and 0.5x106IJ m-2S. feltiae + 0.5x106IJ m-2S. carpocapsae. Another experiment was carried out using the same treatments to evaluate the possible nematode effect on mushroom yield. The number of adults emerging from the substrate was evaluated for each fly species. No decrease in the population of M. halterata was detected with nematode application, whereas the number of L. auripila was reduced in both treatments, particularly in the individual treatment with S. feltiae. The application of entomopathogenic nematodes has no adverse effect on mushroom production.
Resumo:
OBJECTIVE: To provide information on the effects of alcohol and tobacco on laryngeal cancer and its subsites. METHODS: This was a case-control study conducted between 1992 and 2000 in northern Italy and Switzerland. A total of 527 cases of incident squamous-cell carcinoma of the larynx and 1297 hospital controls frequency-matched with cases on age, sex, and area of residence were included. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were estimated using multiple logistic regression. RESULTS: In comparison with never smokers, ORs were 19.8 for current smokers and 7.0 for ex-smokers. The risk increased in relation to the number of cigarettes (OR = 42.9 for > or = 25 cigarettes/day) and for duration of smoking (OR = 37.2 for > or = 40 years). For alcohol, the risk increased in relation to number of drinks (OR = 5.9 for > or = 56 drinks per week). Combined alcohol and tobacco consumption showed a multiplicative (OR = 177) rather than an additive risk. For current smokers and current drinkers the risk was higher for supraglottis (ORs 54.9 and 2.6, respectively) than for glottis (ORs 7.4 and 1.8) and others subsites (ORs 10.9 and 1.9). CONCLUSIONS: Our study shows that both cigarette smoking and alcohol drinking are independent risk factors for laryngeal cancer. Heavy consumption of alcohol and cigarettes determined a multiplicative risk increase, possibly suggesting biological synergy.
Resumo:
In this thesis, the sorption and elastic properties of the cation-exchange resins were studied to explain the liquid chromatographic separation of carbohydrates. Na+, Ca2+ and La3+ form strong poly(styrene-co-divinylbenzene) (SCE) as well as Na+ and Ca2+ form weak acrylic (WCE) cation-exchange resins at different cross-link densities were treated within this work. The focus was on the effects of water-alcohol mixtures, mostly aqueous ethanol, and that of the carbohydrates. The carbohydrates examined were rhamnose, xylose, glucose, fructose, arabinose, sucrose, xylitol and sorbitol. In addition to linear chromatographic conditions, non-linear conditions more typical for industrial applications were studied. Both experimental and modeling aspectswere covered. The aqueous alcohol sorption on the cation-exchangers were experimentally determined and theoretically calculated. The sorption model includes elastic parameters, which were obtained from sorption data combined with elasticity measurements. As hydrophilic materials cation-exchangers are water selective and shrink when an organic solvent is added. At a certain deswelling degree the elastic resins go through glass transition and become as glass-like material. Theincreasing cross-link level and the valence of the counterion decrease the sorption of solvent components in the water-rich solutions. The cross-linkage or thecounterions have less effect on the water selectivity than the resin type or the used alcohol. The amount of water sorbed is higher in the WCE resin and, moreover, the WCE resin is more water selective than the corresponding SCE resin. Theincreased aliphatic part of lower alcohols tend to increase the water selectivity, i.e. the resins are more water selective in 2-propanol than in ethanol solutions. Both the sorption behavior of carbohydrates and the sorption differences between carbohydrates are considerably affected by the eluent composition and theresin characteristics. The carbohydrate sorption was experimentally examined and modeled. In all cases, sorption and moreover the separation of carbohydrates are dominated by three phenomena: partition, ligand exchange and size exclusion. The sorption of hydrophilic carbohydrates increases when alcohol is added into the eluent or when carbohydrate is able to form coordination complexes with the counterions, especially with multivalent counterions. Decreasing polarity of the eluent enhances the complex stability. Size exclusion effect is more prominent when the resin becomes tighter or carbohydrate size increases. On the other hand,the elution volumes between different sized carbohydrates decreases with the decreasing polarity of the eluent. The chromatographic separation of carbohydrateswas modeled, using rhamnose and xylose as target molecules. The thermodynamic sorption model was successfully implemented in the rate-based column model. The experimental chromatographic data were fitted by using only one adjustable parameter. In addition to the fitted data also simulated data were generated and utilized in explaining the effect of the eluent composition and of the resin characteristics on the carbohydrate separation.
Resumo:
Concerning process control of batch cooling crystallization the present work focused on the cooling profile and seeding technique. Secondly, the influence of additives on batch-wise precipitation process was investigated. Moreover, a Computational Fluid Dynamics (CFD) model for simulation of controlled batch cooling crystallization was developed. A novel cooling model to control supersaturation level during batch-wise cooling crystallization was introduced. The crystallization kinetics together with operating conditions, i.e. seed loading, cooling rate and batch time, were taken into account in the model. Especially, the supersaturation- and suspension density- dependent secondary nucleation was included in the model. The interaction between the operating conditions and their influence on the control target, i.e. the constant level of supersaturation, were studied with the aid of a numerical solution for the cooling model. Further, the batch cooling crystallization was simulated with the ideal mixing model and CFD model. The moment transformation of the population balance, together with the mass and heat balances, were solved numerically in the simulation. In order to clarify a relationship betweenthe operating conditions and product sizes, a system chart was developed for anideal mixing condition. The utilization of the system chart to determine the appropriate operating condition to meet a required product size was introduced. With CFD simulation, batch crystallization, operated following a specified coolingmode, was studied in the crystallizers having different geometries and scales. The introduced cooling model and simulation results were verified experimentallyfor potassium dihydrogen phosphate (KDP) and the novelties of the proposed control policies were demonstrated using potassium sulfate by comparing with the published results in the literature. The study on the batch-wise precipitation showed that immiscible additives could promote the agglomeration of a derivative of benzoic acid, which facilitated the filterability of the crystal product.
Resumo:
Water lines are an important source of potentíal contamination. Every dental unit is equipped with small-bore flexible plastic tubing to bring water to different hand pieces, such as the air/water syringe, the ultrasonic scaler or the high-speed hand piece. Most dental units are connected directly to municipal distribution systems for potable water and chlorinated or not, this water contains diverse...
Resumo:
Present book collects some of the thoughts developed during the 5 years (2004-2009) of work in the frame of the CHALLENGE project, "The Changing Landscape of European Liberty and Security". The project has related academic knowledge and research with the analysis of the policies and practices of the member States of the European Union [EU] around the couple liberty and security
Resumo:
In this article, the fusion of a stochastic metaheuristic as Simulated Annealing (SA) with classical criteria for convergence of Blind Separation of Sources (BSS), is shown. Although the topic of BSS, by means of various techniques, including ICA, PCA, and neural networks, has been amply discussed in the literature, to date the possibility of using simulated annealing algorithms has not been seriously explored. From experimental results, this paper demonstrates the possible benefits offered by SA in combination with high order statistical and mutual information criteria for BSS, such as robustness against local minima and a high degree of flexibility in the energy function.
Resumo:
Ample evidence indicates that inhibitory control (IC), a key executive component referring to the ability to suppress cognitive or motor processes, relies on a right-lateralized fronto-basal brain network. However, whether and how IC can be improved with training and the underlying neuroplastic mechanisms remains largely unresolved. We used functional and structural magnetic resonance imaging to measure the effects of 2 weeks of training with a Go/NoGo task specifically designed to improve frontal top-down IC mechanisms. The training-induced behavioral improvements were accompanied by a decrease in neural activity to inhibition trials within the right pars opercularis and triangularis, and in the left pars orbitalis of the inferior frontal gyri. Analyses of changes in brain anatomy induced by the IC training revealed increases in grey matter volume in the right pars orbitalis and modulations of white matter microstructure in the right pars triangularis. The task-specificity of the effects of training was confirmed by an absence of change in neural activity to a control working memory task. Our combined anatomical and functional findings indicate that differential patterns of functional and structural plasticity between and within inferior frontal gyri enhanced the speed of top-down inhibition processes and in turn IC proficiency. The results suggest that training-based interventions might help overcoming the anatomic and functional deficits of inferior frontal gyri manifesting in inhibition-related clinical conditions. More generally, we demonstrate how multimodal neuroimaging investigations of training-induced neuroplasticity enable revealing novel anatomo-functional dissociations within frontal executive brain networks. Hum Brain Mapp 36:2527-2543, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
This work describes different possibilities of protection and control system improvement of primary distribution substation. The status of condition and main problems of power networks from reliability point of view in Russia are described. This work studies technologies used today in Russia for protection of distribution networks with their disadvantages. Majority of medium voltage networks (6-35 kV) has isolated network point. There is still no any protection available on the market which allows to estimate distance to fault in case of earth fault. The thesis analyses methods of earth fault distance calculation. On the basis of computer simulation the influence of various factors on calculation accuracy is studied. The practical implementation of the method presupposes usage of digital relay. Application of digital relay is accompanied by numerous opportunities which are described in this work. Also advantages of system implemented on the basis of IEC 61850 standard are examined. Finally, suitability of modern digital relays from GOST standard point of view is analyzed.
Resumo:
[Summary] 2. Roles of quality control in the pharmaceutical and biopharmaceutical industries. - 2.1. Pharmaceutical industry. - 2.2. Biopharmaceutical industry. - 2.3. Policy and regulatory. - 2.3.1. The US Food and Drug Administration (FDA). - 2.3.2. The European Medicine Agency (EMEA). - 2.3.3. The Japanese Ministry of Work, Labor and Welfare (MHLW). - 2.3.4. The Swiss Agency for Therapeutic Products (Swissmedic). - 2.3.5. The International Conference on Harmonization (ICH). - - 3. Types of testing. - 3.1. Microbiological purity tests. - 3.2. Physiochemical tests. - 3.3. Critical to quality steps. - 3.3.1. API starting materials and excipients. - 3.3.2. Intermediates. - 3.3.3. APIs (drug substances) and final drug product. - 3.3.4. Primary and secondary packaging materials fro drug products. - - 4. Manufacturing cost and quality control. - 4.1.1. Pharmaceutical manufacturing cost breakdown. - 4.1.2. Biopharmaceutical manufacturing cost breakdown. - 4.2. Batch failure / rejection / rework / recalls. - - 5. Future trends in the quality control of pharmaceuticals and biopharmaceuticals. - 5.1. Rapid and real time testing. - 5.1.1. Physio-chemicals testing. - 5.1.2. Rapid microbiology methods
Resumo:
Rosin is a natural product from pine forests and it is used as a raw material in resinate syntheses. Resinates are polyvalent metal salts of rosin acids and especially Ca- and Ca/Mg- resinates find wide application in the printing ink industry. In this thesis, analytical methods were applied to increase general knowledge of resinate chemistry and the reaction kinetics was studied in order to model the non linear solution viscosity increase during resinate syntheses by the fusion method. Solution viscosity in toluene is an important quality factor for resinates to be used in printing inks. The concept of critical resinate concentration, c crit, was introduced to define an abrupt change in viscosity dependence on resinate concentration in the solution. The concept was then used to explain the non-inear solution viscosity increase during resinate syntheses. A semi empirical model with two estimated parameters was derived for the viscosity increase on the basis of apparent reaction kinetics. The model was used to control the viscosity and to predict the total reaction time of the resinate process. The kinetic data from the complex reaction media was obtained by acid value titration and by FTIR spectroscopic analyses using a conventional calibration method to measure the resinate concentration and the concentration of free rosin acids. A multivariate calibration method was successfully applied to make partial least square (PLS) models for monitoring acid value and solution viscosity in both mid-infrared (MIR) and near infrared (NIR) regions during the syntheses. The calibration models can be used for on line resinate process monitoring. In kinetic studies, two main reaction steps were observed during the syntheses. First a fast irreversible resination reaction occurs at 235 °C and then a slow thermal decarboxylation of rosin acids starts to take place at 265 °C. Rosin oil is formed during the decarboxylation reaction step causing significant mass loss as the rosin oil evaporates from the system while the viscosity increases to the target level. The mass balance of the syntheses was determined based on the resinate concentration increase during the decarboxylation reaction step. A mechanistic study of the decarboxylation reaction was based on the observation that resinate molecules are partly solvated by rosin acids during the syntheses. Different decarboxylation mechanisms were proposed for the free and solvating rosin acids. The deduced kinetic model supported the analytical data of the syntheses in a wide resinate concentration region, over a wide range of viscosity values and at different reaction temperatures. In addition, the application of the kinetic model to the modified resinate syntheses gave a good fit. A novel synthesis method with the addition of decarboxylated rosin (i.e. rosin oil) to the reaction mixture was introduced. The conversion of rosin acid to resinate was increased to the level necessary to obtain the target viscosity for the product at 235 °C. Due to a lower reaction temperature than in traditional fusion synthesis at 265 °C, thermal decarboxylation is avoided. As a consequence, the mass yield of the resinate syntheses can be increased from ca. 70% to almost 100% by recycling the added rosin oil.