985 resultados para Semantic Web -- TFM
Resumo:
The semantic web vision is one in which rich, ontology-based semantic markup will become widely available. The availability of semantic markup on the web opens the way to novel, sophisticated forms of question answering. AquaLog is a portable question-answering system which takes queries expressed in natural language and an ontology as input, and returns answers drawn from one or more knowledge bases (KBs). We say that AquaLog is portable because the configuration time required to customize the system for a particular ontology is negligible. AquaLog presents an elegant solution in which different strategies are combined together in a novel way. It makes use of the GATE NLP platform, string metric algorithms, WordNet and a novel ontology-based relation similarity service to make sense of user queries with respect to the target KB. Moreover it also includes a learning component, which ensures that the performance of the system improves over the time, in response to the particular community jargon used by end users.
Resumo:
The goal of semantic search is to improve on traditional search methods by exploiting the semantic metadata. In this paper, we argue that supporting iterative and exploratory search modes is important to the usability of all search systems. We also identify the types of semantic queries the users need to make, the issues concerning the search environment and the problems that are intrinsic to semantic search in particular. We then review the four modes of user interaction in existing semantic search systems, namely keyword-based, form-based, view-based and natural language-based systems. Future development should focus on multimodal search systems, which exploit the advantages of more than one mode of interaction, and on developing the search systems that can search heterogeneous semantic metadata on the open semantic Web.
Resumo:
Because metadata that underlies semantic web applications is gathered from distributed and heterogeneous data sources, it is important to ensure its quality (i.e., reduce duplicates, spelling errors, ambiguities). However, current infrastructures that acquire and integrate semantic data have only marginally addressed the issue of metadata quality. In this paper we present our metadata acquisition infrastructure, ASDI, which pays special attention to ensuring that high quality metadata is derived. Central to the architecture of ASDI is a verification engine that relies on several semantic web tools to check the quality of the derived data. We tested our prototype in the context of building a semantic web portal for our lab, KMi. An experimental evaluation comparing the automatically extracted data against manual annotations indicates that the verification engine enhances the quality of the extracted semantic metadata.
Resumo:
While much of a company's knowledge can be found in text repositories, current content management systems have limited capabilities for structuring and interpreting documents. In the emerging Semantic Web, search, interpretation and aggregation can be addressed by ontology-based semantic mark-up. In this paper, we examine semantic annotation, identify a number of requirements, and review the current generation of semantic annotation systems. This analysis shows that, while there is still some way to go before semantic annotation tools will be able to address fully all the knowledge management needs, research in the area is active and making good progress.
Resumo:
We are interested in the annotation of knowledge which does not necessarily require a consensus. Scholarly debate is an example of such a category of knowledge where disagreement and contest are widespread and desirable, and unlike many Semantic Web approaches, we are interested in the capture and the compilation of these conflicting viewpoints and perspectives. The Scholarly Ontologies project provides the underlying formalism to represent this meta-knowledge, and we will look at ways to lighten the burden of its creation. After having described some particularities of this kind of knowledge, we introduce ClaimSpotter, our approach to support its ‘capture’, based on the elicitation of a number of recommendations which are presented for consideration to our annotators (or analysts), and give some elements of evaluation.
Resumo:
Many software engineers have found that it is difficult to understand, incorporate and use different formal models consistently in the process of software developments, especially for large and complex software systems. This is mainly due to the complex mathematical nature of the formal methods and the lack of tool support. It is highly desirable to have software models and their related software artefacts systematically connected and used collaboratively, rather than in isolation. The success of the Semantic Web, as the next generation of Web technology, can have profound impact on the environment for formal software development. It allows both the software engineers and machines to understand the content of formal models and supports more effective software design in terms of understanding, sharing and reusing in a distributed manner. To realise the full potential of the Semantic Web in formal software development, effectively creating proper semantic metadata for formal software models and their related software artefacts is crucial. This paper proposed a framework that allows users to interconnect the knowledge about formal software models and other related documents using the semantic technology. We first propose a methodology with tool support is proposed to automatically derive ontological metadata from formal software models and semantically describe them. We then develop a Semantic Web environment for representing and sharing formal Z/OZ models. A method with prototype tool is presented to enhance semantic query to software models and other artefacts. © 2014.
Resumo:
The information domain is a recognised sphere for the influence, ownership, and control of information and it's specifications, format, exploitation and explanation (Thompson, 1967). The article presents a description of the financial information domain issues related to the organisation and operation of a stock market. We review the strategic, institutional and standards dimensions of the stock market information domain in relation to the current semantic web knowledge and how and whether this could be used in modern web based stock market information systems to provide the quality of information that their stakeholders want. The analysis is based on the FINE model (Blanas, 2003). The analysis leads to a number of research questions for future research.
Resumo:
In this paper the key features of a two-layered model for describing the semantic of dynamical web resources are introduced. In the current Semantic Web proposal [Berners-Lee et al., 2001] web resources are classified into static ontologies which describes the semantic network of their inter-relationships [Kalianpur, 2001][Handschuh & Staab, 2002] and complex constraints described by logical quantified formula [Boley et al., 2001][McGuinnes & van Harmelen, 2004][McGuinnes et al., 2004], the basic idea is that software agents can use techniques of automatic reasoning in order to relate resources and to support sophisticated web application. On the other hand, web resources are also characterized by their dynamical aspects, which are not adequately addressed by current web models. Resources on the web are dynamical since, in the minimal case, they can appear or disappear from the web and their content is upgraded. In addition, resources can traverse different states, which characterized the resource life-cycle, each resource state corresponding to different possible uses of the resource. Finally most resources are timed, i.e. they information they provide make sense only if contextualised with respect to time, and their validity and accuracy is greatly bounded by time. Temporal projection and deduction based on dynamical and time constraints of the resources can be made and exploited by software agents [Hendler, 2001] in order to make previsions about the availability and the state of a resource, for deciding when consulting the resource itself or in order to deliberately induce a resource state change for reaching some agent goal, such as in the automated planning framework [Fikes & Nilsson, 1971][Bacchus & Kabanza,1998].
Resumo:
Most existing approaches to Twitter sentiment analysis assume that sentiment is explicitly expressed through affective words. Nevertheless, sentiment is often implicitly expressed via latent semantic relations, patterns and dependencies among words in tweets. In this paper, we propose a novel approach that automatically captures patterns of words of similar contextual semantics and sentiment in tweets. Unlike previous work on sentiment pattern extraction, our proposed approach does not rely on external and fixed sets of syntactical templates/patterns, nor requires deep analyses of the syntactic structure of sentences in tweets. We evaluate our approach with tweet- and entity-level sentiment analysis tasks by using the extracted semantic patterns as classification features in both tasks. We use 9 Twitter datasets in our evaluation and compare the performance of our patterns against 6 state-of-the-art baselines. Results show that our patterns consistently outperform all other baselines on all datasets by 2.19% at the tweet-level and 7.5% at the entity-level in average F-measure.
Resumo:
Social media has become an effective channel for communicating both trends and public opinion on current events. However the automatic topic classification of social media content pose various challenges. Topic classification is a common technique used for automatically capturing themes that emerge from social media streams. However, such techniques are sensitive to the evolution of topics when new event-dependent vocabularies start to emerge (e.g., Crimea becoming relevant to War Conflict during the Ukraine crisis in 2014). Therefore, traditional supervised classification methods which rely on labelled data could rapidly become outdated. In this paper we propose a novel transfer learning approach to address the classification task of new data when the only available labelled data belong to a previous epoch. This approach relies on the incorporation of knowledge from DBpedia graphs. Our findings show promising results in understanding how features age, and how semantic features can support the evolution of topic classifiers.
Resumo:
Lexicon-based approaches to Twitter sentiment analysis are gaining much popularity due to their simplicity, domain independence, and relatively good performance. These approaches rely on sentiment lexicons, where a collection of words are marked with fixed sentiment polarities. However, words' sentiment orientation (positive, neural, negative) and/or sentiment strengths could change depending on context and targeted entities. In this paper we present SentiCircle; a novel lexicon-based approach that takes into account the contextual and conceptual semantics of words when calculating their sentiment orientation and strength in Twitter. We evaluate our approach on three Twitter datasets using three different sentiment lexicons. Results show that our approach significantly outperforms two lexicon baselines. Results are competitive but inconclusive when comparing to state-of-art SentiStrength, and vary from one dataset to another. SentiCircle outperforms SentiStrength in accuracy on average, but falls marginally behind in F-measure. © 2014 Springer International Publishing.
Resumo:
Indicators are widely used by organizations as a way of evaluating, measuring and classifying organizational performance. As part of performance evaluation systems, indicators are often shared or compared across internal sectors or with other organizations. However, indicators can be vague and imprecise, and also can lack semantics, making comparisons with other indicators difficult. Thus, this paper presents a knowledge model based on an ontology that may be used to represent indicators semantically and generically, dealing with the imprecision and vagueness, and thus facilitating better comparison. Semantic technologies are shown to be suitable for this solution, so that it could be able to represent complex data involved in indicators comparison.
Resumo:
The Electronic Product Code Information Service (EPCIS) is an EPCglobal standard, that aims to bridge the gap between the physical world of RFID1 tagged artifacts, and information systems that enable their tracking and tracing via the Electronic Product Code (EPC). Central to the EPCIS data model are "events" that describe specific occurrences in the supply chain. EPCIS events, recorded and registered against EPC tagged artifacts, encapsulate the "what", "when", "where" and "why" of these artifacts as they flow through the supply chain. In this paper we propose an ontological model for representing EPCIS events on the Web of data. Our model provides a scalable approach for the representation, integration and sharing of EPCIS events as linked data via RESTful interfaces, thereby facilitating interoperability, collaboration and exchange of EPC related data across enterprises on a Web scale.
Resumo:
Wireless Sensor Network (WSN) systems have become more and more popular in our modern life. They have been widely used in many areas, such as smart homes/buildings, context-aware devices, military applications, etc. Despite the increasing usage, there is a lack of formal description and automated verification for WSN system design. In this paper, we present an approach to support the rigorous verification of WSN modeling using the Semantic Web technology We use Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL) to define a meta-ontology for the modeling of WSN systems. Furthermore, we apply ontology reasoners to perform automated verification on customized WSN models and their instances. We demonstrate and evaluate our approach through a Light Control System (LCS) as the case study.
Resumo:
This thesis presents a certification method for semantic web services compositions which aims to statically ensure its functional correctness. Certification method encompasses two dimensions of verification, termed base and functional dimensions. Base dimension concerns with the verification of application correctness of the semantic web service in the composition, i.e., to ensure that each service invocation given in the composition comply with its respective service definition. The certification of this dimension exploits the semantic compatibility between the invocation arguments and formal parameters of the semantic web service. Functional dimension aims to ensure that the composition satisfies a given specification expressed in the form of preconditions and postconditions. This dimension is formalized by a Hoare logic based calculus. Partial correctness specifications involving compositions of semantic web services can be derived from the deductive system proposed. Our work is also characterized by exploiting the use of a fragment of description logic, i.e., ALC, to express the partial correctness specifications. In order to operationalize the proposed certification method, we developed a supporting environment for defining the semantic web services compositions as well as to conduct the certification process. The certification method were experimentally evaluated by applying it in three different proof concepts. These proof concepts enabled to broadly evaluate the method certification