814 resultados para Semantic Web, Cineca,data warehouse, Università italiane


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La web ha sufrido una drástica transformación en los últimos años, debido principalmente a su popularización y a la enorme cantidad de información que alberga. Debido a estos factores se ha dado el salto de la denominada Web de Documentos, a la Web Semántica, donde toda la información está relacionada con otra. Las principales ventajas de la información enlazada estriban en la facilidad de reutilización, accesibilidad y disponibilidad para ser encontrada por el usuario. En este trabajo se pretende poner de manifiesto la utilidad de los datos enlazados aplicados al ámbito geográfico y mostrar como pueden ser empleados hoy en día. Para ello se han explotado datos enlazados de carácter espacial provenientes de diferentes fuentes, a través de servidores externos o endpoints SPARQL. Además de eso se ha trabajado con un servidor privado capaz de proporcionar información enlazada almacenada en un equipo personal. La explotación de información enlazada se ha implementado en una aplicación web en lenguaje JavaScript, tratando de abstraer totalmente al usuario del tratamiento de los datos a nivel interno de la aplicación. Esta aplicación cuenta además con algunos módulos y opciones capaces de interactuar con las consultas realizadas a los servidores, consiguiendo un entorno más intuitivo y agradable para el usuario. ABSTRACT: In recent years the web has suffered a drastic transformation because of the popularization and the huge amount of stored information. Due to these factors it has gone from Documents web to Semantic web, where the data are linked. The main advantages of Linked Data lie in the ease of his reuse, accessibility and availability to be located by users. The aim of this research is to highlight the usefulness of the geographic linked data and show how can be used at present time. To get this, the spatial linked data coming from several sources have been managed through external servers or also called endpoints. Besides, it has been worked with a private server able to provide linked data stored in a personal computer. The use of linked data has been implemented in a JavaScript web application, trying completely to abstract the internally data treatment of the application to make the user ignore it. This application has some modules and options that are able to interact with the queries made to the servers, getting a more intuitive and kind environment for users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sentiment analysis has recently gained popularity in the financial domain thanks to its capability to predict the stock market based on the wisdom of the crowds. Nevertheless, current sentiment indicators are still silos that cannot be combined to get better insight about the mood of different communities. In this article we propose a Linked Data approach for modelling sentiment and emotions about financial entities. We aim at integrating sentiment information from different communities or providers, and complements existing initiatives such as FIBO. The ap- proach has been validated in the semantic annotation of tweets of several stocks in the Spanish stock market, including its sentiment information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the authors introduce a novel mechanism for data management in a middleware for smart home control, where a relational database and semantic ontology storage are used at the same time in a Data Warehouse. An annotation system has been designed for instructing the storage format and location, registering new ontology concepts and most importantly, guaranteeing the Data Consistency between the two storage methods. For easing the data persistence process, the Data Access Object (DAO) pattern is applied and optimized to enhance the Data Consistency assurance. Finally, this novel mechanism provides an easy manner for the development of applications and their integration with BATMP. Finally, an application named "Parameter Monitoring Service" is given as an example for assessing the feasibility of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The W3C Linked Data Platform (LDP) specification defines a standard HTTP-based protocol for read/write Linked Data and pro- vides the basis for application integration using Linked Data. This paper presents an LDP adapter for the Bugzilla issue tracker and demonstrates how to use the LDP protocol to expose a traditional application as a read/write Linked Data application. This approach provides a exible LDP adoption strategy with minimal changes to existing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The W3C Linked Data Platform (LDP) candidate recom- mendation defines a standard HTTP-based protocol for read/write Linked Data. The W3C R2RML recommendation defines a language to map re- lational databases (RDBs) and RDF. This paper presents morph-LDP, a novel system that combines these two W3C standardization initiatives to expose relational data as read/write Linked Data for LDP-aware ap- plications, whilst allowing legacy applications to continue using their relational databases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Web of Data currently comprises ? 62 billion triples from more than 2,000 different datasets covering many fields of knowledge3. This volume of structured Linked Data can be seen as a particular case of Big Data, referred to as Big Semantic Data [4]. Obviously, powerful computational configurations are tradi- tionally required to deal with the scalability problems arising to Big Semantic Data. It is not surprising that this ?data revolution? has competed in parallel with the growth of mobile computing. Smartphones and tablets are massively used at the expense of traditional computers but, to date, mobile devices have more limited computation resources. Therefore, one question that we may ask ourselves would be: can (potentially large) semantic datasets be consumed natively on mobile devices? Currently, only a few mobile apps (e.g., [1, 9, 2, 8]) make use of semantic data that they store in the mobile devices, while many others access existing SPARQL endpoints or Linked Data directly. Two main reasons can be considered for this fact. On the one hand, in spite of some initial approaches [6, 3], there are no well-established triplestores for mobile devices. This is an important limitation because any po- tential app must assume both RDF storage and SPARQL resolution. On the other hand, the particular features of these devices (little storage space, less computational power or more limited bandwidths) limit the adoption of seman- tic data for different uses and purposes. This paper introduces our HDTourist mobile application prototype. It con- sumes urban data from DBpedia4 to help tourists visiting a foreign city. Although it is a simple app, its functionality allows illustrating how semantic data can be stored and queried with limited resources. Our prototype is implemented for An- droid, but its foundations, explained in Section 2, can be deployed in any other platform. The app is described in Section 3, and Section 4 concludes about our current achievements and devises the future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sentiment and Emotion Analysis strongly depend on quality language resources, especially sentiment dictionaries. These resources are usually scattered, heterogeneous and limited to specific domains of appli- cation by simple algorithms. The EUROSENTIMENT project addresses these issues by 1) developing a common language resource representation model for sentiment analysis, and APIs for sentiment analysis services based on established Linked Data formats (lemon, Marl, NIF and ONYX) 2) by creating a Language Resource Pool (a.k.a. LRP) that makes avail- able to the community existing scattered language resources and services for sentiment analysis in an interoperable way. In this paper we describe the available language resources and services in the LRP and some sam- ple applications that can be developed on top of the EUROSENTIMENT LRP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RDF streams are sequences of timestamped RDF statements or graphs, which can be generated by several types of data sources (sensors, social networks, etc.). They may provide data at high volumes and rates, and be consumed by applications that require real-time responses. Hence it is important to publish and interchange them efficiently. In this paper, we exploit a key feature of RDF data streams, which is the regularity of their structure and data values, proposing a compressed, efficient RDF interchange (ERI) format, which can reduce the amount of data transmitted when processing RDF streams. Our experimental evaluation shows that our format produces state-of-the-art streaming compression, remaining efficient in performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El aprendizaje basado en problemas se lleva aplicando con éxito durante las últimas tres décadas en un amplio rango de entornos de aprendizaje. Este enfoque educacional consiste en proponer problemas a los estudiantes de forma que puedan aprender sobre un dominio particular mediante el desarrollo de soluciones a dichos problemas. Si esto se aplica al modelado de conocimiento, y en particular al basado en Razonamiento Cualitativo, las soluciones a los problemas pasan a ser modelos que representan el compotamiento del sistema dinámico propuesto. Por lo tanto, la tarea del estudiante en este caso es acercar su modelo inicial (su primer intento de representar el sistema) a los modelos objetivo que proporcionan soluciones al problema, a la vez que adquieren conocimiento sobre el dominio durante el proceso. En esta tesis proponemos KaiSem, un método que usa tecnologías y recursos semánticos para guiar a los estudiantes durante el proceso de modelado, ayudándoles a adquirir tanto conocimiento como sea posible sin la directa supervisión de un profesor. Dado que tanto estudiantes como profesores crean sus modelos de forma independiente, estos tendrán diferentes terminologías y estructuras, dando lugar a un conjunto de modelos altamente heterogéneo. Para lidiar con tal heterogeneidad, proporcionamos una técnica de anclaje semántico para determinar, de forma automática, enlaces entre la terminología libre usada por los estudiantes y algunos vocabularios disponibles en la Web de Datos, facilitando con ello la interoperabilidad y posterior alineación de modelos. Por último, proporcionamos una técnica de feedback semántico para comparar los modelos ya alineados y generar feedback basado en las posibles discrepancias entre ellos. Este feedback es comunicado en forma de sugerencias individualizadas que el estudiante puede utilizar para acercar su modelo a los modelos objetivos en cuanto a su terminología y estructura se refiere. ABSTRACT Problem-based learning has been successfully applied over the last three decades to a diverse range of learning environments. This educational approach consists of posing problems to learners, so they can learn about a particular domain by developing solutions to them. When applied to conceptual modeling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behavior of a dynamic system. Therefore, the learner's task is to move from their initial model, as their first attempt to represent the system, to the target models that provide solutions to that problem while acquiring domain knowledge in the process. In this thesis we propose KaiSem, a method for using semantic technologies and resources to scaffold the modeling process, helping the learners to acquire as much domain knowledge as possible without direct supervision from the teacher. Since learners and experts create their models independently, these will have different terminologies and structure, giving rise to a pool of models highly heterogeneous. To deal with such heterogeneity, we provide a semantic grounding technique to automatically determine links between the unrestricted terminology used by learners and some online vocabularies of the Web of Data, thus facilitating the interoperability and later alignment of the models. Lastly, we provide a semantic-based feedback technique to compare the aligned models and generate feedback based on the possible discrepancies. This feedback is communicated in the form of individualized suggestions, which can be used by the learner to bring their model closer in terminology and structure to the target models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linked Data is the key paradigm of the Semantic Web, a new generation of the World Wide Web that promises to bring meaning (semantics) to data. A large number of both public and private organizations have published their data following the Linked Data principles, or have done so with data from other organizations. To this extent, since the generation and publication of Linked Data are intensive engineering processes that require high attention in order to achieve high quality, and since experience has shown that existing general guidelines are not always sufficient to be applied to every domain, this paper presents a set of guidelines for generating and publishing Linked Data in the context of energy consumption in buildings (one aspect of Building Information Models). These guidelines offer a comprehensive description of the tasks to perform, including a list of steps, tools that help in achieving the task, various alternatives for performing the task, and best practices and recommendations. Furthermore, this paper presents a complete example on the generation and publication of Linked Data about energy consumption in buildings, following the presented guidelines, in which the energy consumption data of council sites (e.g., buildings and lights) belonging to the Leeds City Council jurisdiction have been generated and published as Linked Data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En esta tesis se estudia la representación, modelado y comparación de colecciones mediante el uso de ontologías en el ámbito de la Web Semántica. Las colecciones, entendidas como agrupaciones de objetos o elementos con entidad propia, son construcciones que aparecen frecuentemente en prácticamente todos los dominios del mundo real, y por tanto, es imprescindible disponer de conceptualizaciones de estas estructuras abstractas y de representaciones de estas conceptualizaciones en los sistemas informáticos, que definan adecuadamente su semántica. Mientras que en muchos ámbitos de la Informática y la Inteligencia Artificial, como por ejemplo la programación, las bases de datos o la recuperación de información, las colecciones han sido ampliamente estudiadas y se han desarrollado representaciones que responden a multitud de conceptualizaciones, en el ámbito de la Web Semántica, sin embargo, su estudio ha sido bastante limitado. De hecho hasta la fecha existen pocas propuestas de representación de colecciones mediante ontologías, y las que hay sólo cubren algunos tipos de colecciones y presentan importantes limitaciones. Esto impide la representación adecuada de colecciones y dificulta otras tareas comunes como la comparación de colecciones, algo crítico en operaciones habituales como las búsquedas semánticas o el enlazado de datos en la Web Semántica. Para solventar este problema esta tesis hace una propuesta de modelización de colecciones basada en una nueva clasificación de colecciones de acuerdo a sus características estructurales (homogeneidad, unicidad, orden y cardinalidad). Esta clasificación permite definir una taxonomía con hasta 16 tipos de colecciones distintas. Entre otras ventajas, esta nueva clasificación permite aprovechar la semántica de las propiedades estructurales de cada tipo de colección para realizar comparaciones utilizando las funciones de similitud y disimilitud más apropiadas. De este modo, la tesis desarrolla además un nuevo catálogo de funciones de similitud para las distintas colecciones, donde se han recogido las funciones de (di)similitud más conocidas y también algunas nuevas. Esta propuesta se ha implementado mediante dos ontologías paralelas, la ontología E-Collections, que representa los distintos tipos de colecciones de la taxonomía y su axiomática, y la ontología SIMEON (Similarity Measures Ontology) que representa los tipos de funciones de (di)similitud para cada tipo de colección. Gracias a estas ontologías, para comparar dos colecciones, una vez representadas como instancias de la clase más apropiada de la ontología E-Collections, automáticamente se sabe qué funciones de (di)similitud de la ontología SIMEON pueden utilizarse para su comparación. Abstract This thesis studies the representation, modeling and comparison of collections in the Semantic Web using ontologies. Collections, understood as groups of objects or elements with their own identities, are constructions that appear frequently in almost all areas of the real world. Therefore, it is essential to have conceptualizations of these abstract structures and representations of these conceptualizations in computer systems, that define their semantic properly. While in many areas of Computer Science and Artificial Intelligence, such as Programming, Databases or Information Retrieval, the collections have been extensively studied and there are representations that match many conceptualizations, in the field Semantic Web, however, their study has been quite limited. In fact, there are few representations of collections using ontologies so far, and they only cover some types of collections and have important limitations. This hinders a proper representation of collections and other common tasks like comparing collections, something critical in usual operations such as semantic search or linking data on the Semantic Web. To solve this problem this thesis makes a proposal for modelling collections based on a new classification of collections according to their structural characteristics (homogeneity, uniqueness, order and cardinality). This classification allows to define a taxonomy with up to 16 different types of collections. Among other advantages, this new classification can leverage the semantics of the structural properties of each type of collection to make comparisons using the most appropriate (dis)similarity functions. Thus, the thesis also develops a new catalog of similarity functions for the different types of collections. This catalog contains the most common (dis)similarity functions as well as new ones. This proposal is implemented through two parallel ontologies, the E-Collections ontology that represents the different types of collections in the taxonomy and their axiomatic, and the SIMEON ontology (Similarity Measures Ontology) that represents the types of (dis)similarity functions for each type of collection. Thanks to these ontologies, to compare two collections, once represented as instances of the appropriate class of E-Collections ontology, we can know automatically which (dis)similarity functions of the SIMEON ontology are suitable for the comparison. Finally, the feasibility and usefulness of this modeling and comparison of collections proposal is proved in the field of oenology, applying both E-Collections and SIMEON ontologies to the representation and comparison of wines with the E-Baco ontology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Semantic Web technologies have been widely applied in the life sciences, for example by data providers such as OpenLifeData and through web services frameworks such as SADI. The recently reported OpenLifeData2SADI project offers access to the vast OpenLifeData data store through SADI services. Findings: This article describes how to merge data retrieved from OpenLifeData2SADI with other SADI services using the Galaxy bioinformatics analysis platform, thus making this semantic data more amenable to complex analyses. This is demonstrated using a working example, which is made distributable and reproducible through a Docker image that includes SADI tools, along with the data and workflows that constitute the demonstration. Conclusions: The combination of Galaxy and Docker offers a solution for faithfully reproducing and sharing complex data retrieval and analysis workflows based on the SADI Semantic web service design patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collaborative recommendation is one of widely used recommendation systems, which recommend items to visitor on a basis of referring other's preference that is similar to current user. User profiling technique upon Web transaction data is able to capture such informative knowledge of user task or interest. With the discovered usage pattern information, it is likely to recommend Web users more preferred content or customize the Web presentation to visitors via collaborative recommendation. In addition, it is helpful to identify the underlying relationships among Web users, items as well as latent tasks during Web mining period. In this paper, we propose a Web recommendation framework based on user profiling technique. In this approach, we employ Probabilistic Latent Semantic Analysis (PLSA) to model the co-occurrence activities and develop a modified k-means clustering algorithm to build user profiles as the representatives of usage patterns. Moreover, the hidden task model is derived by characterizing the meaningful latent factor space. With the discovered user profiles, we then choose the most matched profile, which possesses the closely similar preference to current user and make collaborative recommendation based on the corresponding page weights appeared in the selected user profile. The preliminary experimental results performed on real world data sets show that the proposed approach is capable of making recommendation accurately and efficiently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evaluation of ontologies is vital for the growth of the Semantic Web. We consider a number of problems in evaluating a knowledge artifact like an ontology. We propose in this paper that one approach to ontology evaluation should be corpus or data driven. A corpus is the most accessible form of knowledge and its use allows a measure to be derived of the ‘fit’ between an ontology and a domain of knowledge. We consider a number of methods for measuring this ‘fit’ and propose a measure to evaluate structural fit, and a probabilistic approach to identifying the best ontology.