906 resultados para Self-organizing cloud
Resumo:
In this paper we propose a neural network model to simplify and 2D meshes. This model is based on the Growing Neural Gas model and is able to simplify any mesh with different topologies and sizes. A triangulation process is included with the objective to reconstruct the mesh. This model is applied to some problems related to urban networks.
Resumo:
Comunicación presentada en el 2nd International Workshop on Pattern Recognition in Information Systems, Alicante, April, 2002.
Growing Neural Gas approach for obtaining homogeneous maps by restricting the insertion of new nodes
Resumo:
The Growing Neural Gas model is used widely in artificial neural networks. However, its application is limited in some contexts by the proliferation of nodes in dense areas of the input space. In this study, we introduce some modifications to address this problem by imposing three restrictions on the insertion of new nodes. Each restriction aims to maintain the homogeneous values of selected criteria. One criterion is related to the square error of classification and an alternative approach is proposed for avoiding additional computational costs. Three parameters are added that allow the regulation of the restriction criteria. The resulting algorithm allows models to be obtained that suit specific needs by specifying meaningful parameters.
Resumo:
In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units). It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mobile agents in the scene. It is also necessary to integrate the vision module into a global system that operates in a complex environment by receiving images from multiple acquisition devices at video frequency. Offering relevant information to higher level systems, monitoring and making decisions in real time, it must accomplish a set of requirements, such as: time constraints, high availability, robustness, high processing speed and re-configurability. We have built a system able to represent and analyze the motion in video acquired by a multi-camera network and to process multi-source data in parallel on a multi-GPU architecture.
Resumo:
Customizing shoe manufacturing is one of the great challenges in the footwear industry. It is a production model change where design adopts not only the main role, but also the main bottleneck. It is therefore necessary to accelerate this process by improving the accuracy of current methods. Rapid prototyping techniques are based on the reuse of manufactured footwear lasts so that they can be modified with CAD systems leading rapidly to new shoe models. In this work, we present a shoe last fast reconstruction method that fits current design and manufacturing processes. The method is based on the scanning of shoe last obtaining sections and establishing a fixed number of landmarks onto those sections to reconstruct the shoe last 3D surface. Automated landmark extraction is accomplished through the use of the self-organizing network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates up to 12 times the surface reconstruction and filtering processes used by the current shoe last design software. The proposed method offers higher accuracy compared with methods with similar efficiency as voxel grid.
Resumo:
Background and objective: In this paper, we have tested the suitability of using different artificial intelligence-based algorithms for decision support when classifying the risk of congenital heart surgery. In this sense, classification of those surgical risks provides enormous benefits as the a priori estimation of surgical outcomes depending on either the type of disease or the type of repair, and other elements that influence the final result. This preventive estimation may help to avoid future complications, or even death. Methods: We have evaluated four machine learning algorithms to achieve our objective: multilayer perceptron, self-organizing map, radial basis function networks and decision trees. The architectures implemented have the aim of classifying among three types of surgical risk: low complexity, medium complexity and high complexity. Results: Accuracy outcomes achieved range between 80% and 99%, being the multilayer perceptron method the one that offered a higher hit ratio. Conclusions: According to the results, it is feasible to develop a clinical decision support system using the evaluated algorithms. Such system would help cardiology specialists, paediatricians and surgeons to forecast the level of risk related to a congenital heart disease surgery.
Resumo:
In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced. First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and the recognition process are performed by using a similarity function that takes into account both the geometric and texture information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our proposal when compared with other state-of the-art methods.
Resumo:
In this paper we argue that patterns of civil society in post-authoritarian democracies are the result of divergent pathways to democracy. Through a comparison of contemporary Portugal (social revolution) and Spain (reform), we show that revolutionary pathways to democracy have a positive impact on the self-organizing abilities of popular groups, thus also contributing to a higher quality of democracy. There are three mechanisms in social revolutionary processes that contribute to this. The first stems from the fact that the masses are the key actor in the revolutionary transformation process, with the power to shape (at least partially) the new rules and institutions of the emerging democratic regime. This results in greater legal recognition and institutional embeddedness between civil society organizations and the state, making it easier, in turn, for resources to be transferred to those organizations. Secondly, as a result of changes to the social and economic structure, revolutions engender more egalitarian societies. Likewise, citizens are given more resources and capacities for collective action. Finally, revolutions tend to crystalize a political culture between elites and the masses in which the principles of egalitarian participation and social change through the action of the people are accepted. This all leads to greater opportunities, resources and legitimacy for the civic action of the common people during the subsequent democratic regime.
Resumo:
This paper presents a novel method for enabling a robot to determine the direction to a sound source through interacting with its environment. The method uses a new neural network, the Parameter-Less Self-Organizing Map algorithm, and reinforcement learning to achieve rapid and accurate response.
Resumo:
Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of non-linear latent variable model called the Generative Topographic Mapping, for which the parameters of the model can be determined using the EM algorithm. GTM provides a principled alternative to the widely used Self-Organizing Map (SOM) of Kohonen (1982), and overcomes most of the significant limitations of the SOM. We demonstrate the performance of the GTM algorithm on a toy problem and on simulated data from flow diagnostics for a multi-phase oil pipeline.
Resumo:
Multidimensional compound optimization is a new paradigm in the drug discovery process, yielding efficiencies during early stages and reducing attrition in the later stages of drug development. The success of this strategy relies heavily on understanding this multidimensional data and extracting useful information from it. This paper demonstrates how principled visualization algorithms can be used to understand and explore a large data set created in the early stages of drug discovery. The experiments presented are performed on a real-world data set comprising biological activity data and some whole-molecular physicochemical properties. Data visualization is a popular way of presenting complex data in a simpler form. We have applied powerful principled visualization methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), to help the domain experts (screening scientists, chemists, biologists, etc.) understand and draw meaningful decisions. We also benchmark these principled methods against relatively better known visualization approaches, principal component analysis (PCA), Sammon's mapping, and self-organizing maps (SOMs), to demonstrate their enhanced power to help the user visualize the large multidimensional data sets one has to deal with during the early stages of the drug discovery process. The results reported clearly show that the GTM and HGTM algorithms allow the user to cluster active compounds for different targets and understand them better than the benchmarks. An interactive software tool supporting these visualization algorithms was provided to the domain experts. The tool facilitates the domain experts by exploration of the projection obtained from the visualization algorithms providing facilities such as parallel coordinate plots, magnification factors, directional curvatures, and integration with industry standard software. © 2006 American Chemical Society.
Resumo:
Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of non-linear latent variable model called the Generative Topographic Mapping, for which the parameters of the model can be determined using the EM algorithm. GTM provides a principled alternative to the widely used Self-Organizing Map (SOM) of Kohonen (1982), and overcomes most of the significant limitations of the SOM. We demonstrate the performance of the GTM algorithm on a toy problem and on simulated data from flow diagnostics for a multi-phase oil pipeline.
Resumo:
The Generative Topographic Mapping (GTM) algorithm of Bishop et al. (1997) has been introduced as a principled alternative to the Self-Organizing Map (SOM). As well as avoiding a number of deficiencies in the SOM, the GTM algorithm has the key property that the smoothness properties of the model are decoupled from the reference vectors, and are described by a continuous mapping from a lower-dimensional latent space into the data space. Magnification factors, which are approximated by the difference between code-book vectors in SOMs, can therefore be evaluated for the GTM model as continuous functions of the latent variables using the techniques of differential geometry. They play an important role in data visualization by highlighting the boundaries between data clusters, and are illustrated here for both a toy data set, and a problem involving the identification of crab species from morphological data.
Resumo:
Magnification factors specify the extent to which the area of a small patch of the latent (or `feature') space of a topographic mapping is magnified on projection to the data space, and are of considerable interest in both neuro-biological and data analysis contexts. Previous attempts to consider magnification factors for the self-organizing map (SOM) algorithm have been hindered because the mapping is only defined at discrete points (given by the reference vectors). In this paper we consider the batch version of SOM, for which a continuous mapping can be defined, as well as the Generative Topographic Mapping (GTM) algorithm of Bishop et al. (1997) which has been introduced as a probabilistic formulation of the SOM. We show how the techniques of differential geometry can be used to determine magnification factors as continuous functions of the latent space coordinates. The results are illustrated here using a problem involving the identification of crab species from morphological data.
Resumo:
The generative topographic mapping (GTM) model was introduced by Bishop et al. (1998, Neural Comput. 10(1), 215-234) as a probabilistic re- formulation of the self-organizing map (SOM). It offers a number of advantages compared with the standard SOM, and has already been used in a variety of applications. In this paper we report on several extensions of the GTM, including an incremental version of the EM algorithm for estimating the model parameters, the use of local subspace models, extensions to mixed discrete and continuous data, semi-linear models which permit the use of high-dimensional manifolds whilst avoiding computational intractability, Bayesian inference applied to hyper-parameters, and an alternative framework for the GTM based on Gaussian processes. All of these developments directly exploit the probabilistic structure of the GTM, thereby allowing the underlying modelling assumptions to be made explicit. They also highlight the advantages of adopting a consistent probabilistic framework for the formulation of pattern recognition algorithms.