841 resultados para Sectoral and territorial approaches
Resumo:
Starting from the exploration of the common features related to a postcolonial and feminist analysis, I will attempt to establish new relationships and to open up new perspectives within the cultural exchanges between the two nations, Galicia and Australia, within a global world. On the one hand, this will be new relationships in favour of a non-sexist language which contributes to overcoming gender discrimination; and on the other hand, new relationships which favour a re-evaluation of voices which have been silenced by hegemonic and centralised discourses.
Resumo:
In this letter, we directly compare digital back-propagation (DBP) with spectral inversion (SI) both with and without symmetry correction via dispersive chirping, and numerically demonstrate that predispersed SI outperforms traditional SI, and approaches the performance of computationally exhaustive ideal DBP. Furthermore, we propose for the first time a novel practical scheme employing predispersed SI to compensate the bulk of channel nonlinearities, and DBP to accommodate the residual penalties due to varying SI location, with predispersed SI ubiquitously employed along the transmission link with <;0.5-dB penalty. Our results also show that predispersed SI enables partial compensation of cross-phase modulation effects, increasing the transmission reach by ×2.
Resumo:
In the present state of the art of authorship attribution there seems to be an opposition between two approaches: cognitive and stylistic methodologies. It is proposed in this article that these two approaches are complementary and that the apparent gap between them can be bridged using Systemic Functional Linguistics (SFL) and in particular some of its theoretical constructions, such as codal variation. This article deals with the theoretical explanation of why such a theory would solve the debate between the two approaches and shows how these two views of authorship attribution are indeed complementary. Although the article is fundamentally theoretical, two example experimental trials are reported to show how this theory can be developed into a workable methodology of doing authorship attribution. In Trial 1, a SFL analysis was carried out on a small dataset consisting of three 300-word texts collected from three different authors whose socio-demographic background matched across a number of parameters. This trial led to some conclusions about developing a methodology based on SFL and suggested the development of another trial, which might hint at a more accurate and useful methodology. In Trial 2, Biber's (1988) multidimensional framework is employed, and a final methodology of authorship analysis based on this kind of analysis is proposed for future research. © 2013, EQUINOX PUBLISHING.
Resumo:
Large-scale introduction of Organic Solar Cells (OSCs) onto the market is currently limited by their poor stability in light and air, factors present in normal working conditions for these devices. Thus, great efforts have to be undertaken to understand the photodegradation mechanisms of their organic materials in order to find solutions that mitigate these effects. This study reports on the elucidation of the photodegradation mechanisms occurring in a low bandgap polymer, namely, Si-PCPDTBT (poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5′-diyl]). Complementary analytical techniques (AFM, HS-SPME-GC-MS, UV-vis and IR spectroscopy) have been employed to monitor the modification of the chemical structure of the polymer upon photooxidative aging and the subsequent consequences on its architecture and nanomechanical properties. Furthermore, these different characterization techniques have been combined with a theoretical approach based on quantum chemistry to elucidate the evolution of the polymer alkyl side chains and backbone throughout exposure. Si-PCPDTBT is shown to be more stable against photooxidation than the commonly studied p-type polymers P3HT and PCDTBT, while modeling demonstrated the benefits of using silicon as a bridging atom in terms of photostability. (Figure Presented).
Resumo:
Current views of the nature of knowledge and of learning suggest that instructional approaches in science education pay closer attention to how students learn rather than on teaching. This study examined the use of approaches to teaching science based on two contrasting perspectives in learning, social constructivist and traditional, and the effects they have on students' attitudes and achievement. Four categories of attitudes were measured using the Upper Secondary Attitude Questionnaire: Attitude towards school, towards the importance of science, towards science as a career, and towards science as a subject in school. Achievement was measured by average class grades and also with a researcher/teacher constructed 30-item test that involved three sub-scales of items based on knowledge, and applications involving near-transfer and far-transfer of concepts. The sample consisted of 202 students in nine intact classrooms in chemistry at a large high school in Miami, Florida, and involved two teachers. Results were analyzed using a two-way analysis of covariance (ANCOVA) with a pretest in attitude as the covariate for attitudes and prior achievement as the covariate for achievement. A comparison of the adjusted mean scores was made between the two groups and between females and males. ^ With constructivist-based teaching, students showed more favorable attitude towards science as a subject, obtained significantly higher scores in class achievement, total achievement and achievement on the knowledge sub-scale of the knowledge and application test. Students in the traditional group showed more favorable attitude towards school. Females showed significantly more positive attitude towards the importance of science and obtained significantly higher scores in class achievement. No significant interaction effects were obtained for method of instruction by gender. ^ This study lends some support to the view that constructivist-based approaches to teaching science is a viable alternative to traditional modes of teaching. It is suggested that in science education, more consideration be given to those aspects of classroom teaching that foster closer coordination between social influences and individual learning. ^
Resumo:
Chromium (Cr) is a metal of particular environmental concern, owing to its toxicity and widespread occurrence in groundwater, soil, and soil solution. A combination of hydrological, geochemical, and microbiological processes governs the subsurface migration of Cr. Little effort has been devoted to examining how these biogeochemical reactions combine with hydrologic processes influence Cr migration. This study has focused on the complex problem of predicting the Cr transport in laboratory column experiments. A 1-D reactive transport model was developed and evaluated against data obtained from laboratory column experiments. ^ A series of dynamic laboratory column experiments were conducted under abiotic and biotic conditions. Cr(III) was injected into columns packed with β-MnO 2-coated sand at different initial concentrations, variable flow rates, and at two different pore water pH (3.0 and 4.0). In biotic anaerobic column experiments Cr(VI) along with lactate was injected into columns packed with quartz sand or β-MnO2-coated sand and bacteria, Shewanella alga Simidu (BrY-MT). A mathematical model was developed which included advection-dispersion equations for the movement of Cr(III), Cr(VI), dissolved oxygen, lactate, and biomass. The model included first-order rate laws governing the adsorption of each Cr species and lactate. The equations for transport and adsorption were coupled with nonlinear equations for rate-limited oxidation-reduction reactions along with dual-monod kinetic equations. Kinetic batch experiments were conducted to determine the reduction of Cr(VI) by BrY-MT in three different substrates. Results of the column experiments with Cr(III)-containing influent solutions demonstrate that β-MnO2 effectively catalyzes the oxidation of Cr(III) to Cr(VI). For a given influent concentration and pore water velocity, oxidation rates are higher, and hence effluent concentrations of Cr(VI) are greater, at pH 4 relative to pH 3. Reduction of Cr(VI) by BrY-MT was rapid (within one hour) in columns packed with quartz sand, whereas Cr(VI) reduction by BrY-MT was delayed (57 hours) in presence of β-MnO 2-coated sand. BrY-MT grown in BHIB (brain heart infusion broth) reduced maximum amount of Cr(VI) to Cr(III) followed by TSB (tryptic soy broth) and M9 (minimum media). The comparisons of data and model results from the column experiments show that the depths associated with Cr(III) oxidation and transport within sediments of shallow aquatic systems can strongly influence trends in surface water quality. The results of this study suggests that carefully performed, laboratory column experiments is a useful tool in determining the biotransformation of redox-sensitive metals even in the presence of strong oxidant, like β-MnO2. ^
Resumo:
Disasters are complex events characterized by damage to key infrastructure and population displacements into disaster shelters. Assessing the living environment in shelters during disasters is a crucial health security concern. Until now, jurisdictional knowledge and preparedness on those assessment methods, or deficiencies found in shelters is limited. A cross-sectional survey (STUSA survey) ascertained knowledge and preparedness for those assessments in all 50 states, DC, and 5 US territories. Descriptive analysis of overall knowledge and preparedness was performed. Fisher’s exact statistics analyzed differences between two groups: jurisdiction type and population size. Two logistic regression models analyzed earthquakes and hurricane risks as predictors of knowledge and preparedness. A convenience sample of state shelter assessments records (n=116) was analyzed to describe environmental health deficiencies found during selected events. Overall, 55 (98%) of jurisdictions responded (states and territories) and appeared to be knowledgeable of these assessments (states 92%, territories 100%, p = 1.000), and engaged in disaster planning with shelter partners (states 96%, territories 83%, p = 0.564). Few had shelter assessment procedures (states 53%, territories 50%, p = 1.000); or training in disaster shelter assessments (states 41%, 60% territories, p = 0.638). Knowledge or preparedness was not predicted by disaster risks, population size, and jurisdiction type in neither model. Knowledge: hurricane (Adjusted OR 0.69, 95% C.I. 0.06-7.88); earthquake (OR 0.82, 95% C.I. 0.17-4.06); and both risks (OR 1.44, 95% C.I. 0.24-8.63); preparedness model: hurricane (OR 1.91, 95% C.I. 0.06-20.69); earthquake (OR 0.47, 95% C.I. 0.7-3.17); and both risks (OR 0.50, 95% C.I. 0.06-3.94). Environmental health deficiencies documented in shelter assessments occurred mostly in: sanitation (30%); facility (17%); food (15%); and sleeping areas (12%); and during ice storms and tornadoes. More research is needed in the area of environmental health assessments of disaster shelters, particularly, in those areas that may provide better insight into the living environment of all shelter occupants and potential effects in disaster morbidity and mortality. Also, to evaluate the effectiveness and usefulness of these assessments methods and the data available on environmental health deficiencies in risk management to protect those at greater risk in shelter facilities during disasters.
Resumo:
Bet-hedging strategies are used by organisms to survive in
unpredictable environments. To pursue a bet-hedging strategy, an
organism must produce multiple phenotypes from a single genotype. What
molecular mechanisms allow this to happen? To address this question, I
created a synthetic system that displays bet-hedging behavior, and
developed a new technique called `TrackScar' to measure the fitness
and stress-resistance of individual cells. I found that bet-hedging
can be generated by actively sensing the environment, and that
bet-hedging strategies based on active sensing need not be
metabolically costly. These results suggest that to understand how
bet-hedging strategies are produced, microorganisms must be
examined in the actual environments that they come from.
Resumo:
Energy policies around the world are mandating for a progressive increase in renewable energy production. Extensive grassland areas with low productivity and land use limitations have become target areas for sustainable energy production to avoid competition with food production on the limited available arable land resources and minimize further conversion of grassland into intensively managed energy cropping systems or abandonment. However, the high spatio-temporal variability in botanical composition and biochemical parameters is detrimental to reliable assessment of biomass yield and quality regarding anaerobic digestion. In an approach to assess the performance for predicting biomass using a multi-sensor combination including NIRS, ultra-sonic distance measurements and LAI-2000, biweekly sensor measurements were taken on a pure stand of reed canary grass (Phalaris aruninacea), a legume grass mixture and a diversity mixture with thirty-six species in an experimental extensive two cut management system. Different combinations of the sensor response values were used in multiple regression analysis to improve biomass predictions compared to exclusive sensors. Wavelength bands for sensor specific NDVI-type vegetation indices were selected from the hyperspectral data and evaluated for the biomass prediction as exclusive indices and in combination with LAI and ultra-sonic distance measurements. Ultrasonic sward height was the best to predict biomass in single sensor approaches (R² 0.73 – 0.76). The addition of LAI-2000 improved the prediction performance by up to 30% while NIRS barely improved the prediction performance. In an approach to evaluate broad based prediction of biochemical parameters relevant for anaerobic digestion using hyperspectral NIRS, spectroscopic measurements were taken on biomass from the Jena-Experiment plots in 2008 and 2009. Measurements were conducted on different conditions of the biomass including standing sward, hay and silage and different spectroscopic devices to simulate different preparation and measurement conditions along the process chain for biogas production. Best prediction results were acquired for all constituents at laboratory measurement conditions with dried and ground samples on a bench-top NIRS system (RPD > 3) with a coefficient of determination R2 < 0.9. The same biomass was further used in batch fermentation to analyse the impact of species richness and functional group composition on methane yields using whole crop digestion and pressfluid derived by the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Although species richness and functional group composition were largely insignificant, the presence of grasses and legumes in the mixtures were most determining factors influencing methane yields in whole crop digestion. High lignocellulose content and a high C/N ratio in grasses may have reduced the digestibility in the first cut material, excess nitrogen may have inhibited methane production in second cut legumes, while batch experiments proved superior specific methane yields of IFBB press fluids and showed that detrimental effects of the parent material were reduced by the technical treatment
Resumo:
Background Many acute stroke trials have given neutral results. Sub-optimal statistical analyses may be failing to detect efficacy. Methods which take account of the ordinal nature of functional outcome data are more efficient. We compare sample size calculations for dichotomous and ordinal outcomes for use in stroke trials. Methods Data from stroke trials studying the effects of interventions known to positively or negatively alter functional outcome – Rankin Scale and Barthel Index – were assessed. Sample size was calculated using comparisons of proportions, means, medians (according to Payne), and ordinal data (according to Whitehead). The sample sizes gained from each method were compared using Friedman 2 way ANOVA. Results Fifty-five comparisons (54 173 patients) of active vs. control treatment were assessed. Estimated sample sizes differed significantly depending on the method of calculation (Po00001). The ordering of the methods showed that the ordinal method of Whitehead and comparison of means produced significantly lower sample sizes than the other methods. The ordinal data method on average reduced sample size by 28% (inter-quartile range 14–53%) compared with the comparison of proportions; however, a 22% increase in sample size was seen with the ordinal method for trials assessing thrombolysis. The comparison of medians method of Payne gave the largest sample sizes. Conclusions Choosing an ordinal rather than binary method of analysis allows most trials to be, on average, smaller by approximately 28% for a given statistical power. Smaller trial sample sizes may help by reducing time to completion, complexity, and financial expense. However, ordinal methods may not be optimal for interventions which both improve functional outcome
Resumo:
The fruit is one of the most complex and important structures produced by flowering plants, and understanding the development and maturation process of fruits in different angiosperm species with diverse fruit structures is of immense interest. In the work presented here, molecular genetics and genomic analysis are used to explore the processes that form the fruit in two species: The model organism Arabidopsis and the diploid strawberry Fragaria vesca. One important basic question concerns the molecular genetic basis of fruit patterning. A long-standing model of Arabidopsis fruit (the gynoecium) patterning holds that auxin produced at the apex diffuses downward, forming a gradient that provides apical-basal positional information to specify different tissue types along the gynoecium’s length. The proposed gradient, however, has never been observed and the model appears inconsistent with a number of observations. I present a new, alternative model, wherein auxin acts to establish the adaxial-abaxial domains of the carpel primordia, which then ensures proper development of the final gynoecium. A second project utilizes genomics to identify genes that regulate fruit color by analyzing the genome sequences of Fragaria vesca, a species of wild strawberry. Shared and distinct SNPs among three F. vesca accessions were identified, providing a foundation for locating candidate mutations underlying phenotypic variations among different F. vesca accessions. Through systematic analysis of relevant SNP variants, a candidate SNP in FveMYB10 was identified that may underlie the fruit color in the yellow-fruited accessions, which was subsequently confirmed by functional assays. Our lab has previously generated extensive RNA-sequencing data that depict genome-scale gene expression profiles in F. vesca fruit and flower tissues at different developmental stages. To enhance the accessibility of this dataset, the web-based eFP software was adapted for this dataset, allowing visualization of gene expression in any tissues by user-initiated queries. Together, this thesis work proposes a well-supported new model of fruit patterning in Arabidopsis and provides further resources for F. vesca, including genome-wide variant lists and the ability to visualize gene expression. This work will facilitate future work linking traits of economic importance to specific genes and gaining novel insights into fruit patterning and development.
Resumo:
168 p.