908 resultados para Scanner Images
Assessment of insect occurrence in boreal forests based on satellite imagery and field measurements.
Resumo:
The presence/absence data of twenty-seven forest insect taxa (e.g. Retinia resinella, Formica spp., Pissodes spp., several scolytids) and recorded environmental variation were used to investigate the applicability of modelling insect occurrence based on satellite imagery. The sampling was based on 1800 sample plots (25 m by 25 m) placed along the sides of 30 equilateral triangles (side 1 km) in a fragmented forest area (approximately 100 km2) in Evo, S Finland. The triangles were overlaid on land use maps interpreted from satellite images (Landsat TM 30 m multispectral scanner imagery 1991) and digitized geological maps. Insect occurrence was explained using either environmental variables measured in the field or those interpreted from the land use and geological maps. The fit of logistic regression models varied between species, possibly because some species may be associated with the characteristics of single trees while other species with stand characteristics. The occurrence of certain insect species at least, especially those associated with Scots pine, could be relatively accurately assessed indirectly on the basis of satellite imagery and geological maps. Models based on both remotely sensed and geological data better predicted the distribution of forest insects except in the case of Xylechinus pilosus, Dryocoetes sp. and Trypodendron lineatum, where the differences were relatively small in favour of the models based on field measurements. The number of species was related to habitat compartment size and distance from the habitat edge calculated from the land use maps, but logistic regressions suggested that other environmental variables in general masked the effect of these variables in species occurrence at the present scale.
Resumo:
Dhondup Gyal (Don grub rgyal, 1953 - 1985) was a Tibetan writer from Amdo (Qinghai, People's Republic of China). He wrote several prose works, poems, scholarly writings and other works which have been later on collected together into The Collected Works of Dhondup Gyal, in six volumes. He had a remarkable influence on the development of modern Tibetan literature in the 1980s. Examining his works, which are characterized by rich imagery, it is possible to notice a transition from traditional to modern ways of literary expression. Imagery is found in both the poems and prose works of Dhondup Gyal. Nature imagery is especially prominent and his writings contain images of flowers and plants, animals, water, wind and clouds, the heavenly bodies and other environmental elements. Also there are images of parts of the body and material and cultural images. To analyse the images, most of which are metaphors and similes, the use of the cognitive theory of metaphor provides a good framework for making comparisons with images in traditional Tibetan literature and also some images in Chinese, Indian and Western literary works. The analysis shows that the images have both traditional and innovative features. The source domains of images often appear similar to those found in traditional Tibetan literature and are slow to change. However, innovative shifts occur in the way they are mapped on their target domains, which may express new meanings and are usually secular in nature if compared to the religiosity which often characterizes traditional Tibetan literature. Dhondup Gyal's poems are written in a variety of styles, ranging from traditional types of verse compositions and poems in the ornate kāvya-style to modern free verse poetry. The powerful central images of his free verse poems and some other works can be viewed as structurally innovative and have been analysed with the help of the theory of conceptual blending. They are often ambiguous in their meaning, but can be interpreted to express ideas related to creativity, freedom and the need for change and development.
Resumo:
Thanks to advances in sensor technology, today we have many applications (space-borne imaging, medical imaging, etc.) where images of large sizes are generated. Straightforward application of wavelet techniques for above images involves certain difficulties. Embedded coders such as EZW and SPIHT require that the wavelet transform of the full image be buffered for coding. Since the transform coefficients also require storing in high precision, buffering requirements for large images become prohibitively high. In this paper, we first devise a technique for embedded coding of large images using zero trees with reduced memory requirements. A 'strip buffer' capable of holding few lines of wavelet coefficients from all the subbands belonging to the same spatial location is employed. A pipeline architecure for a line implementation of above technique is then proposed. Further, an efficient algorithm to extract an encoded bitstream corresponding to a region of interest in the image has also been developed. Finally, the paper describes a strip based non-embedded coding which uses a single pass algorithm. This is to handle high-input data rates. (C) 2002 Elsevier Science B.V. All rights reserved.
Reconstructing Solid Model from 2D Scanned Images of Biological Organs for Finite Element Simulation
Resumo:
This work presents a methodology to reconstruct 3D biological organs from image sequences or other scan data using readily available free softwares with the final goal of using the organs (3D solids) for finite element analysis. The methodology deals with issues such as segmentation, conversion to polygonal surface meshes, and finally conversion of these meshes to 3D solids. The user is able to control the detail or the level of complexity of the solid constructed. The methodology is illustrated using 3D reconstruction of a porcine liver as an example. Finally, the reconstructed liver is imported into the commercial software ANSYS, and together with a cyst inside the liver, a nonlinear analysis performed. The results confirm that the methodology can be used for obtaining 3D geometry of biological organs. The results also demonstrate that the geometry obtained by following this methodology can be used for the nonlinear finite element analysis of organs. The methodology (or the procedure) would be of use in surgery planning and surgery simulation since both of these extensively use finite elements for numerical simulations and it is better if these simulations are carried out on patient specific organ geometries. Instead of following the present methodology, it would cost a lot to buy a commercial software which can reconstruct 3D biological organs from scanned image sequences.
Resumo:
Image filtering techniques have numerous potential applications in biomedical imaging and image processing. The design of filters largely depends on the a-priori knowledge about the type of noise corrupting the image and image features. This makes the standard filters to be application and image specific. The most popular filters such as average, Gaussian and Wiener reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design filters based on discrete cosine transform (DCT) is proposed in this study for optimal medical image filtering. This algorithm exploits the better energy compaction property of DCT and re-arrange these coefficients in a wavelet manner to get the better energy clustering at desired spatial locations. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions.
Resumo:
Fusion of multi-sensor imaging data enables a synergetic interpretation of complementary information obtained by sensors of different spectral ranges. Multi-sensor data of diverse spectral, spatial and temporal resolutions require advanced numerical techniques for analysis and interpretation. This paper reviews ten advanced pixel based image fusion techniques – Component substitution (COS), Local mean and variance matching, Modified IHS (Intensity Hue Saturation), Fast Fourier Transformed-enhanced IHS, Laplacian Pyramid, Local regression, Smoothing filter (SF), Sparkle, SVHC and Synthetic Variable Ratio. The above techniques were tested on IKONOS data (Panchromatic band at 1 m spatial resolution and Multispectral 4 bands at 4 m spatial resolution). Evaluation of the fused results through various accuracy measures, revealed that SF and COS methods produce images closest to corresponding multi-sensor would observe at the highest resolution level (1 m).
Resumo:
This paper presents hierarchical clustering algorithms for land cover mapping problem using multi-spectral satellite images. In unsupervised techniques, the automatic generation of number of clusters and its centers for a huge database is not exploited to their full potential. Hence, a hierarchical clustering algorithm that uses splitting and merging techniques is proposed. Initially, the splitting method is used to search for the best possible number of clusters and its centers using Mean Shift Clustering (MSC), Niche Particle Swarm Optimization (NPSO) and Glowworm Swarm Optimization (GSO). Using these clusters and its centers, the merging method is used to group the data points based on a parametric method (k-means algorithm). A performance comparison of the proposed hierarchical clustering algorithms (MSC, NPSO and GSO) is presented using two typical multi-spectral satellite images - Landsat 7 thematic mapper and QuickBird. From the results obtained, we conclude that the proposed GSO based hierarchical clustering algorithm is more accurate and robust.
Resumo:
This paper presents an improved hierarchical clustering algorithm for land cover mapping problem using quasi-random distribution. Initially, Niche Particle Swarm Optimization (NPSO) with pseudo/quasi-random distribution is used for splitting the data into number of cluster centers by satisfying Bayesian Information Criteria (BIC). Themain objective is to search and locate the best possible number of cluster and its centers. NPSO which highly depends on the initial distribution of particles in search space is not been exploited to its full potential. In this study, we have compared more uniformly distributed quasi-random with pseudo-random distribution with NPSO for splitting data set. Here to generate quasi-random distribution, Faure method has been used. Performance of previously proposed methods namely K-means, Mean Shift Clustering (MSC) and NPSO with pseudo-random is compared with the proposed approach - NPSO with quasi distribution(Faure). These algorithms are used on synthetic data set and multi-spectral satellite image (Landsat 7 thematic mapper). From the result obtained we conclude that use of quasi-random sequence with NPSO for hierarchical clustering algorithm results in a more accurate data classification.