995 resultados para Sault Sainte Marie Canal (Mich.)
Resumo:
The role of microorganisms in the development and maintenance of pulpal and periapical inflammation have been well documented. The success of root canal treatment largely depends on the elimination of microbial contamination from the root canal system. Although mechanical instrumentation of root canals can reduce bacterial population, effective elimination of bacteria cannot be achieved without the use of antimicrobial root canal irrigation and medication. This review will discuss the antimicrobial effects of the known root canal irrigants and medicaments and explore future developments in the field. © 2007 Mosby, Inc. All rights reserved.
Resumo:
This research investigated seepage under hydraulic structures considering flow through the banks of the canal. A computer model, utilizing the finite element method, was used. Different configurations of sheetpile driven under the floor of the structure were studied. Results showed that the transverse extension of sheetpile, driven at the middle of the floor, into the banks of the canal had very little effect on seepage losses, uplift force, and on the exit gradient at the downstream end of the floor. Likewise, confining the downstream floor with sheetpile from three sides was not found effective. When the downstream floor was confined with sheetpile from all sides, this has significantly reduced the exit gradient. Furthermore, all the different configurations of the sheetpile had insignificant effect on seepage losses. The most effective configuration of the sheetpile was the case when two rows of sheetpiles were driven at the middle and at the downstream end of the floor, with the latter sheetpile extended few meters into the banks of the canal. This case has significantly reduced the exit gradient and caused only slight increase in the uplift force when compared to other sheetpile configurations. The present study suggests that two-dimensional analysis of seepage problems underestimates the exit gradient and uplift force on hydraulic structures.