987 resultados para Safety engineering
Resumo:
Observing the working procedure of construction workers is an effective means of maintaining the safety performance of a construction project. It is also difficult to achieve due to a high worker-to-safety-officer ratio. There is an imminent need for the development of a tool to assist in the real-time monitoring of workers, in order to reduce the number of construction accidents. The development and application of a real time locating system (RTLS) based on the Chirp Spread Spectrum (CSS) technique is described in this paper for tracking the real-time position of workers on construction sites. Experiments and tests were carried out both on- and off-site to verify the accuracy of static and dynamic targets by the system, indicating an average error of within one metre. Experiments were also carried out to verify the ability of the system to identify workers’ unsafe behaviours. Wireless data transfer was used to simplify the deployment of the system. The system was deployed in a public residential construction project and proved to be quick and simple to use. The cost of the developed system is also reported to be reasonable (around 1800USD) in this study and is much cheaper than the cost of other RTLS. In addition, the CCS technique is shown to provide an economical solution with reasonable accuracy compared with other positioning systems, such as ultra wideband. The study verifies the potential of the CCS technique to provide an effective and economical aid in the improvement of safety management in the construction industry.
Resumo:
Construction is one of the most hazardous industries due to its dynamic, temporary, and decentralized nature. The Hong Kong Commissioner for Labor identifies worker behavior as the root cause of construction accidents. Behavior-based safety (BBS) is one effective approach in managing employee safety issues. However, there is little research on the application of BBS in the construction industry. This research proposes an extension of the BBS approach, proactive behavior-based safety (PBBS), to improve construction safety. PBBS integrates the theory of BBS with the technology of Proactive Construction Management System (PCMS). The innovations of PBBS are: (1) automatically monitoring location-based behaviors; (2)quantitatively measuring safety performance; (3) investigating potential causes of unsafe behaviors; and (4) improving the efficiency of safety management. A pilot study of a Hong Kong construction site practicing PBBS was conducted. The experiment results showed that PBBS performed well on construction accident prevention and the Safety Index (SI) of the two project teams, with increased improvements by 36.07% and 44.70% respectively. It is concluded that PBBS is effective and adaptable to construction industry.
Resumo:
The implementation of pavement management seems to ignore road safety, with its focus being mainly on infrastructure condition. Safety management as part of pavement management should consider various means of reducing the frequency of vehicle crashes by allocating corrective measures to mitigate accident exposure, as well as reduce accident severity and likelihood. However, it is common that lack of accident records and crash contributing factors impedes incorporating safety into pavement management. This paper presents a case study for the initial development of pavement management systems considering data limitations for 3000 km of Tanzania’s national roads. A performance based optimization utilizes indices for safety and surface condition to allocate corrective measures. A modified Pareto analysis capable of accounting for annual performance and of balancing resources to achieve good surface condition and low levels of safety was applied. Tradeoff analysis for the case study found the need to assign 30% relevance to condition and 70% to road safety. Safety and condition deficiencies were corrected within 5 years with the majority of improvements dedicated to surface treatments and some geometric corrections. Large investments for correcting geometric issues were observed in years two and three if more money was made available.
Resumo:
The construction industry has long been considered to have unacceptably high injury and fatality rates. Previous research has shown that small construction companies sustain higher injury rates than large companies. However, despite the industry being dominated by a very large number of such small companies, little is known of their occupational health and safety (OHS) needs, practices and constraints. This paper takes a first step in aiming to identify the principal barriers that affect good OHS performance of small construction companies so that effective OHS practices can be developed to improve this in future. The contents of the literature are first summarised, in which three critical barriers to good OHS practice in small construction firms are proposed. They are : cost, time, lack of safety awareness and concern. The results of a questionnaire survey carried out with South East Queensland construction personnel are presented, which largely confirm what is suggested by the literature research and also succeed in providing an indication of their ranking in terms of importance and suggestions for overcoming these barriers. The research results provide a better understanding of the issues that restrict good OHS practice in small construction companies and potential measures for improvement.
Resumo:
Employees’ safety climate perceptions dictate their safety behavior because individuals act based on their perceptions of reality. Extensive empirical research in applied psychology has confirmed this relationship. However, rare efforts have been made to investigate the factors contributing to a favorable safety climate in construction research. As an initial effort to address the knowledge gap, this paper examines factors contributing to a psychological safety climate, an operationalization of a safety climate at the individual level, and, hence, the basic element of a safety climate at higher levels. A multiperspective framework of contributors to a psychological safety climate is estimated by a structural equation modeling technique using individual questionnaire responses from a random sample of construction project personnel. The results inform management of three routes to psychological safety climate: a client’s proactive involvement in safety management, a workforce-friendly workplace created by the project team, and transformational supervisors’ communication about safety matters with the workforce. This paper contributes to the field of construction engineering and management by highlighting a broader contextual influence in a systematic formation of psychological safety climate perceptions.
Resumo:
Cyclists are among the most vulnerable road users. Many recent interventions have aimed at improving their safety on the road, such as the minimum overtaking distance rule introduced in Queensland in 2014. Smartphones offer excellent opportunities for technical intervention for road safety at a limited cost. Indeed, they have a lot of available processing power and many embedded sensors that allow analysing a rider's (or driver's) motion, behaviour, and environment; this is especially relevant for cyclists, as they do not have the space or power allowance that can be found in most motor vehicles. The aim of the study presented in this paper is to assess cyclists’ support for a range of new smartphone-based safety technologies. The preliminary results for an online survey with cyclists recruited from Bicycle Queensland and Triathlon Queensland, with N=191, are presented. A number of innovative safety systems such as automatic logging of incidents without injuries, reporting of dangerous area via a website/app, automatic notification of emergency services in case of crash or fall, and advanced navigation apps were assessed. A significant part of the survey is dedicated to GoSafeCycle, a cooperative collision prevention app based on motion tracking and Wi-Fi communications developed at CARRS-Q. Results show a marked preference toward automatic detection and notification of emergencies (62-70% positive assessment) and GoSafeCycle (61.7% positive assessment), as well as reporting apps (59.1% positive assessment). Such findings are important in the context of current promotion of active transports and highlight the need for further development of system supported by the general public.
Resumo:
Although statistical data in some developed countries indicate that migrant workers are nearly 30% more likely to have work-related injuries than local workers, no equivalent official injury/ incident statistics on the health and safety (H&S) of migrant workers are currently tracked in Australia. With increasing numbers of migrant workers having joined Australia’s extractive industries infrastructure and commercial construction industry, this suggests the need for some investigation. A particular issue is that lack of H&S communication is one of the key factors leading to construction industry accidents/ incidents as it prevents workers from effectively receiving H&S safety training and acquiring H&S information. Migrant workers whose first languages are not English are particularly affected by this problem and ways are needed to improve their situation. The research aims to do this by evaluating the H&S communication problems of migrant workers and identify an effective H&S communication structure. An overview of the challenge being addressed by the research is firstly provided, followed by a description of the research framework, and a report of the initial findings, from which recommendations are provided for improving H&S performance in the construction industry.
Resumo:
Use of socket prostheses Currently, for individuals with limb loss, the conventional method of attaching a prosthetic limb relies on a socket that fits over the residual limb. However, there are a number of issues concerning the use of a socket (e.g., blisters, irritation, and discomfort) that result in dissatisfaction with socket prostheses, and these lead ultimately a significant decrease in quality of life. Bone-anchored prosthesis Alternatively, the concept of attaching artificial limbs directly to the skeletal system has been developed (bone anchored prostheses), as it alleviates many of the issues surrounding the conventional socket interface.Bone anchored prostheses rely on two critical components: the implant, and the percutaneous abutment or adapter, which forms the connection for the external prosthetic system (Figure 1). To date, an implant that screws into the long bone of the residual limb has been the most common intervention. However, more recently, press-fit implants have been introduced and their use is increasing. Several other devices are currently at various stages of development, particularly in Europe and the United States. Benefits of bone-anchored prostheses Several key studies have demonstrated that bone-anchored prostheses have major clinical benefits when compared to socket prostheses (e.g., quality of life, prosthetic use, body image, hip range of motion, sitting comfort, ease of donning and doffing, osseoperception (proprioception), walking ability) and acceptable safety, in terms of implant stability and infection. Additionally, this method of attachment allows amputees to participate in a wide range of daily activities for a substantially longer duration. Overall, the system has demonstrated a significant enhancement to quality of life. Challenges of direct skeletal attachment However, due to the direct skeletal attachment, serious injury and damage can occur through excessive loading events such as during a fall (e.g., component damage, peri-prosthetic fracture, hip dislocation, and femoral head fracture). These incidents are costly (e.g., replacement of components) and could require further surgical interventions. Currently, these risks are limiting the acceptance of bone-anchored technology and the substantial improvement to quality of life that this treatment offers. An in-depth investigation into these risks highlighted a clear need to re-design and improve the componentry in the system (Figure 2), to improve the overall safety during excessive loading events. Aim and purposes The ultimate aim of this doctoral research is to improve the loading safety of bone-anchored prostheses, to reduce the incidence of injury and damage through the design of load restricting components, enabling individuals fitted with the system to partake in everyday activities, with increased security and self-assurance. The safety component will be designed to release or ‘fail’ external to the limb, in a way that protects the internal bone-implant interface, thus removing the need for restorative surgery and potential damage to the bone. This requires detailed knowledge of the loads typically experienced by the limb and an understanding of potential overload situations that might occur. Hence, a comprehensive review of the loading literature surrounding bone anchored prostheses will be conducted as part of this project, with the potential for additional experimental studies of the loads during normal activities to fill in gaps in the literature. This information will be pivotal in determining the specifications for the properties of the safety component, and the bone-implant system. The project will follow the Stanford Biodesign process for the development of the safety component.
Resumo:
Intrusion (unauthorized stepping-into/staying-in a hazardous area), as a common type of near-miss, is the prime cause of the majority of incidents on construction sites including fall from heights, and striking against or being struck by moving objects. Accidents often occur because workers take shortcuts moving about the site without fully perceiving the potential dangers. A number of researches have been devoted to developing methods to prevent such behaviors mainly based on the theory of Behavior-Based Safety (BBS), which aims to cultivate safety behaviors among workers in accordance with safety regulations. In current BBS practice, trained observers and safety supervisors are responsible for safety behavior inspections following safety plans and operation regulations. The observation process is time-consuming and its effectiveness depends largely on the observer’s safety knowledge and experience, which often results in omissions or bias. This paper presents a reformed safety behavior modification approach by integrating a location-based technology with BBS. Firstly, a detailed background is provided, covering current intrusion problems on site, existing use of BBS for behavior improvement, difficulties in achieving widespread adoption and potential technologies for location tracking and in-time feedback. Then, a conceptual framework of positioning technology-enhanced BBS is developed, followed by details of the corresponding on-line supporting system, Real Time Location System (RTLS) and Virtual Construction System (VCS). The application of the system is then demonstrated and tested in a construction site in Hong Kong. Final comments are made concerning further research direction and prospects for wider adoption.
Resumo:
Large cities depend heavily on their metro systems to reduce traffic congestion, which is particularly the case with Shanghai, the largest and most developed city in China. For the purposes of enhancing the possibility in quantitative risk assessment and promoting the safety management level in Shanghai metro, an adaptable metro operation incident database (MOID) is therefore presented for containing details of all incidents that have occurred in metro operation. Taking compatibility and simplicity into consideration, Microsoft Access 2010 software is used for the comprehensive and thorough design of the MOID. Based on MOID, statistical characteristics of incident, such as types, causes, time, and severity, are discovered and 24 accident precursors are identified in Shanghai metro. The processes are demonstrated to show how the MOID can be used to identify trends in the incidents that have occurred and to anticipate and prevent future accidents. In order to promote the application of MOID, an organizational structure is proposed from the four aspects of supervision, research, implementation, and manufacturer. This research would be conducive to safety risk analysis in identifying relevant precursors in safety management and assessing safety level as a qualitative tool.
Resumo:
The current state of the practice in Blackspot Identification (BSI) utilizes safety performance functions based on total crash counts to identify transport system sites with potentially high crash risk. This paper postulates that total crash count variation over a transport network is a result of multiple distinct crash generating processes including geometric characteristics of the road, spatial features of the surrounding environment, and driver behaviour factors. However, these multiple sources are ignored in current modelling methodologies in both trying to explain or predict crash frequencies across sites. Instead, current practice employs models that imply that a single underlying crash generating process exists. The model mis-specification may lead to correlating crashes with the incorrect sources of contributing factors (e.g. concluding a crash is predominately caused by a geometric feature when it is a behavioural issue), which may ultimately lead to inefficient use of public funds and misidentification of true blackspots. This study aims to propose a latent class model consistent with a multiple crash process theory, and to investigate the influence this model has on correctly identifying crash blackspots. We first present the theoretical and corresponding methodological approach in which a Bayesian Latent Class (BLC) model is estimated assuming that crashes arise from two distinct risk generating processes including engineering and unobserved spatial factors. The Bayesian model is used to incorporate prior information about the contribution of each underlying process to the total crash count. The methodology is applied to the state-controlled roads in Queensland, Australia and the results are compared to an Empirical Bayesian Negative Binomial (EB-NB) model. A comparison of goodness of fit measures illustrates significantly improved performance of the proposed model compared to the NB model. The detection of blackspots was also improved when compared to the EB-NB model. In addition, modelling crashes as the result of two fundamentally separate underlying processes reveals more detailed information about unobserved crash causes.
Using Big Data to manage safety-related risk in the upstream oil and gas industry: A research agenda
Resumo:
Despite considerable effort and a broad range of new approaches to safety management over the years, the upstream oil & gas industry has been frustrated by the sector’s stubbornly high rate of injuries and fatalities. This short communication points out, however, that the industry may be in a position to make considerable progress by applying “Big Data” analytical tools to the large volumes of safety-related data that have been collected by these organizations. Toward making this case, we examine existing safety-related information management practices in the upstream oil & gas industry, and specifically note that data in this sector often tends to be highly customized, difficult to analyze using conventional quantitative tools, and frequently ignored. We then contend that the application of new Big Data kinds of analytical techniques could potentially reveal patterns and trends that have been hidden or unknown thus far, and argue that these tools could help the upstream oil & gas sector to improve its injury and fatality statistics. Finally, we offer a research agenda toward accelerating the rate at which Big Data and new analytical capabilities could play a material role in helping the industry to improve its health and safety performance.
Resumo:
This paper presents two simple simulation and modelling tools designed to aid in the safety assessment required for unmanned aircraft operations within unsegregated airspace. First, a fast pair-wise encounter generator is derived to simulate the See and Avoid environment. The utility of the encounter generator is demonstrated through the development of a hybrid database and a statistical performance evaluation of an autonomous See and Avoid decision and control strategy. Second, an unmanned aircraft mission generator is derived to help visualise the impact of multiple persistent unmanned operations on existing air traffic. The utility of the mission generator is demonstrated through an example analysis of a mixed airspace environment using real traffic data in Australia. These simulation and modelling approaches constitute a useful and extensible set of analysis tools, that can be leveraged to help explore some of the more fundamental and challenging problems facing civilian unmanned aircraft system integration.
Resumo:
The construction industries of developed countries are faced with an aging workforce and a shortage of recruits. It is common for migrant workers/ethnic minorities (EMs) who are already part of the society to join the construction industry. With increasing involvement of EMs in the construction industry, effective strategies for improving their safety and health are urgently needed. The existing body of knowledge is mainly derived from research conducted in English-speaking countries with Western cultures. Research on safety of migrant/EM construction workers in multidialect Asian countries with Eastern cultures has been lacking. This study aimed to identify various strategies for improving the safety and health of EM construction workers from the Asian perspective. Twenty-two face-to-face semistructured interviews were performed with safety professionals in Hong Kong followed by two rounds of Delphi survey with 18 safety experts to verify the interview findings and rank the relative importance of the strategies. The study unveiled 14 strategies for improving the safety performance of EM workers. The three most important ones identified were: (1) to provide safety training in EM native languages; (2) that government and industry associations should play an active role in promoting health and safety awareness of EM workers, and; (3) to encourage EM workers to learn the local language. This study contributes to filling the research gap by evaluating the strategies for improving safety of migrant/EM construction workers in Asian countries with Eastern cultures in which English is not the first language. Research findings would assist occupational health and safety experts and relevant stakeholders in designing strategies for improving the safety and health of EM workers, which will ultimately improve overall safety performance of the construction industry.
Resumo:
"Safety of RMAA works is an almost uncharted topic of rising importance internationally. Small construction contractors are particularly dependant on RMAA work, especially during times of recession, and they undertake more risks on these jobs than large companies do. This book is based on unique international research and consultancy projects which detail, investigate, and suggest solutions to the specific challenges of safety in RMAA works, based on case studies. Starting with an overview of safety in the wider construction industries of developed countries, the first half of this book also provides a comprehensive summary of relevant rules, regulations, and the resulting safety performances. The systems in the UK, US and Hong Kong are described and contrasted, giving the reader an understanding of how different regulatory approaches have yielded a variety of results. From this solid introduction, specific problems observed in RMAA work are examined through case studies, with reference to the underlying cultural and demographic factors, and a variety of practical engineering and management solutions are explored. This important and practical international work is essential reading for postgraduate students of health and safety in construction, construction project management, or construction in developing countries, as well as policy-makers and construction project managers."--Publisher website