926 resultados para SYSTEMIC TRANSLOCATION
Resumo:
Vaccination procedures within the cattle industry are important disease control tools to minimize economic and welfare burdens associated with respiratory pathogens. However, new vaccine, antigen and carrier technologies are required to combat emerging viral strains and enhance the efficacy of respiratory vaccines, particularly at the point of pathogen entry. New technologies, specifically metabolomic profiling, could be applied to identify metabolite immune-correlates representative of immune protection following vaccination aiding in the design and screening of vaccine candidates. This study for the first time demonstrates the ability of untargeted UPLC-MS metabolomic profiling to identify metabolite immune correlates characteristic of immune responses following mucosal vaccination in calves. Male Holstein Friesian calves were vaccinated with Pfizer Rispoval® PI3 + RSV intranasal vaccine and metabolomic profiling of post-vaccination plasma revealed 12 metabolites whose peak intensities differed significantly from controls. Plasma levels of glycocholic acid, N-[(3α,5β,12α)-3,12-Dihydroxy-7,24-dioxocholan-24-yl]glycine, uric acid and biliverdin were found to be significantly elevated in vaccinated animals following secondary vaccine administration, whereas hippuric acid significantly decreased. In contrast, significant upregulation of taurodeoxycholic acid and propionylcarnitine levels were confined to primary vaccine administration. Assessment of such metabolite markers may provide greater information on the immune pathways stimulated from vaccine formulations and benchmarking early metabolomic responses to highly immunogenic vaccine formulations could provide a means for rapidly assessing new vaccine formulations. Furthermore, the identification of metabolic systemic immune response markers which relate to specific cell signaling pathways of the immune system could allow for targeted vaccine design to stimulate key pathways which can be assessed at the metabolic level.
Resumo:
New Findings
What is the central question of this study?Exercise performance is limited during hypoxia by a critical reduction in cerebral and skeletal tissue oxygenation. To what extent an elevation in systemic free radical accumulation contributes to microvascular deoxygenation and the corresponding reduction in maximal aerobic capacity remains unknown.What is the main finding and its importance?We show that altered free radical metabolism is not a limiting factor for exercise performance in hypoxia, providing important insight into the fundamental mechanisms involved in the control of vascular oxygen transport.
Exercise performance in hypoxia may be limited by a critical reduction in cerebral and skeletal tissue oxygenation, although the underlying mechanisms remain unclear. We examined whether increased systemic free radical accumulation during hypoxia would be associated with elevated microvascular deoxygenation and reduced maximal aerobic capacity (). Eleven healthy men were randomly assigned single-blind to an incremental semi-recumbent cycling test to determine in both normoxia (21% O2) and hypoxia (12% O2) separated by a week. Continuous-wave near-infrared spectroscopy was employed to monitor concentration changes in oxy- and deoxyhaemoglobin in the left vastus lateralis muscle and frontal cerebral cortex. Antecubital venous blood samples were obtained at rest and at to determine oxidative (ascorbate radical by electron paramagnetic resonance spectroscopy), nitrosative (nitric oxide metabolites by ozone-based chemiluminescence and 3-nitrotyrosine by enzyme-linked immunosorbent assay) and inflammatory stress biomarkers (soluble intercellular/vascular cell adhesion 1 molecules by enzyme-linked immunosorbent assay). Hypoxia was associated with increased cerebral and muscle tissue deoxygenation and lower (P < 0.05 versus normoxia). Despite an exercise-induced increase in oxidative–nitrosative–inflammatory stress, hypoxia per se did not have an additive effect (P > 0.05 versus normoxia). Consequently, we failed to observe correlations between any metabolic, haemodynamic and cardiorespiratory parameters (P > 0.05). Collectively, these findings suggest that altered free radical metabolism cannot explain the elevated microvascular deoxygenation and corresponding lower in hypoxia. Further research is required to determine whether free radicals when present in excess do indeed contribute to the premature termination of exercise in hypoxia.
Resumo:
Aim To investigate associations between periodontal disease pathogens and levels of systemic inflammation measured by C-reactive protein (CRP). Methods A representative sample of dentate 60-70-year-old men in Northern Ireland had a comprehensive periodontal examination. Men taking statins were excluded. Subgingival plaque samples were analysed by quantitative real time PCR to identify the presence of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia. High-sensitivity CRP (mg/l) was measured from fasting blood samples. Multiple linear regression analysis was performed using log-transformed CRP concentration as the dependent variable, with the presence of each periodontal pathogen as predictor variables, with adjustment for various potential confounders. Results A total of 518 men (mean age 63.6 SD 3.0 years) were included in the analysis. Multiple regression analysis showed that body mass index (p < 0.001), current smoking (p < 0.01), the detectable presence of P. gingivalis (p < 0.01) and hypertension (p = 0.01), were independently associated with an increased CRP. The detectable presence of P. gingivalis was associated with a 20% (95% confidence interval 4-35%) increase in CRP (mg/l) after adjustment for all other predictor variables. Conclusion In these 60-70-year-old dentate men, the presence of P. gingivalis in subgingival plaque was significantly associated with a raised level of C-reactive protein.
Resumo:
Activated protein C (APC) protects against sepsis in animal models and inhibits the lipopolysacharide (LPS)-induced elaboration of proinflammatory cytokines from monocytes. The molecular mechanism responsible for this property is unknown. We assessed the effect of APC on LPS-induced tumour necrosis factor alpha (TNF-alpha) production and on the activation of the central proinflammatory transcription factor nuclear factor-kappaB (NF-kappaB) in a THP-1 cell line. Cells were preincubated with varying concentrations of APC (200 microg/ml, 100 microg/ml and 20 microg/ml) before addition of LPS (100 ng/ml and 10 microg/ml). APC inhibited LPS-induced production of TNF-alpha both in the presence and absence of fetal calf serum (FCS), although the effect was less marked with 10% FCS. APC also inhibited LPS-induced activation of NF-kappaB, with APC (200 microg/ml) abolishing the effect of LPS (100 ng/ml). The ability of APC to inhibit LPS-induced translocation of NF-kappaB is likely to be a significant event given the critical role of the latter in the host inflammatory response.
Resumo:
Severe aplastic anaemia (SAA) is an uncommon disorder which may be associated with several congenital syndromes. However, it has rarely been described in association with a constitutional karyotypic abnormality. The breakpoint of the balanced t(6:10)(q13:q22) translocation described here does not disrupt any currently recognized gene of haemopoietic or stromal importance. This report also highlights the problems inherent in the use of bone marrow transplantation (BMT) for treating multiply transfused aplastic anaemia patients.
Resumo:
Cellular signal transduction in response to environmental signals involves a relay of precisely regulated signal amplifying and damping events. A prototypical signaling relay involves ligands binding to cell surface receptors and triggering the activation of downstream enzymes to ultimately affect the subcellular distribution and activity of DNA-binding proteins that regulate gene expression. These so-called signal transduction cascades have dominated our view of signaling for decades. More recently evidence has accumulated that components of these cascades can be multifunctional, in effect playing a conventional role for example as a cell surface receptor for a ligand whilst also having alternative functions for example as transcriptional regulators in the nucleus. This raises new challenges for researchers. What are the cues/triggers that determine which role such proteins play? What are the trafficking pathways which regulate the spatial distribution of such proteins so that they can perform nuclear functions and under what circumstances are these alternative functions most relevant?
Resumo:
Background: Outwith clinical trials, patient outcomes specifically related to SACT (systemic anti-cancer therapy) are not well reported despite a significant proportion of patients receiving active treatment at the end of life. The NCEPOD reviewing deaths within 30 days of SACT found SACT caused or hastened death in 27% of cases.
Method: Across the Northern Ireland cancer network, 95 patients who died within 30 days of SACT for solid tumours were discussed at the Morbidity and Mortality monthly meeting during 2013. Using a structured template, each case was independently reviewed, with particular focus on whether SACT caused or hastened death.
Results: Lung, GI and breast cancers were the most common sites. Performance status was recorded in 92% at time of final SACT cycle (ECOG PS 0-2 89%).
In 57% the cause of death was progressive disease. Other causes included thromboembolism (13%) and infection (5% neutropenic sepsis, 6% non-neutropenic sepsis). In 26% with death from progressive disease, the patient was first cycle of first line treatment for metastatic disease. In the majority discussion regarding treatment aims and risks was documented. Only one patient was receiving SACT with curative intent, who died from appropriately managed neutropenic sepsis.
A definitive decision regarding SACT's role in death was made in 60%: in 49% SACT was deemed non-contributory and in 11% SACT was deemed the cause of death. In 40% SACT did not play a major role, but a definitive negative association could not be made.
Conclusion: Development of a robust review process of 30-day mortality after SACT established a benchmark for SACT delivery for future comparisons and identified areas for SACT service organisation improvement. Moreover it encourages individual practice reflection and highlights the importance of balancing patients' needs and concerns with realistic outcomes and risks, particularly in heavily pre-treated patients or those of poor performance status.
Resumo:
In recent years much attention has been given to systemic risk and maintaining financial stability. Much of the focus, rightly, has been on market failures and the role of regulation in addressing them. This article looks at the role of domestic policies and government actions as sources of global instability. The global financial system is built upon global markets controlled by national financial and macroeconomic policies. In this context, regulatory asymmetries, diverging policy preferences, and government failures add a further dimension to global systemic risk not present at the national level.
Systemic risk is a result of the interplay between two independent variables: an underlying trigger event, in this analysis a domestic policy measure, and a transmission channel. The solution to systemic risk requires tackling one of these variables. In a domestic setting, the centralization of regulatory power into one single authority makes it easier to balance the delicate equilibrium between enhancing efficiency and reducing instability. However, in a global financial system in which national financial policies serve to maximize economic welfare, regulators will be confronted with difficult policy and legal tradeoffs.
We investigate the role that financial regulation plays in addressing domestic policy failures and in controlling the danger of global financial interdependence. To do so we analyse global financial interconnectedness, and explain its role in transmitting instability; we investigate the political economy dynamics at the origin of regulatory asymmetries and government failures; and we discuss the limits of regulation.
Resumo:
Objective: To determine the prevalence of systemic corticosteroid-induced morbidity in severe asthma.
Design: Cross-sectional observational study.Setting The primary care Optimum Patient Care Research Database and the British Thoracic Society Difficult Asthma Registry.
Participants: Optimum Patient Care Research Database (7195 subjects in three age- and gender-matched groups)—severe asthma (Global Initiative for Asthma (GINA) treatment step 5 with four or more prescriptions/year of oral corticosteroids, n=808), mild/moderate asthma (GINA treatment step 2/3, n=3975) and non-asthma controls (n=2412). 770 subjects with severe asthma from the British Thoracic Society Difficult Asthma Registry (442 receiving daily oral corticosteroids to maintain disease control).
Main outcome measures: Prevalence rates of morbidities associated with systemic steroid exposure were evaluated and reported separately for each group.
Results: 748/808 (93%) subjects with severe asthma had one or more condition linked to systemic corticosteroid exposure (mild/moderate asthma 3109/3975 (78%), non-asthma controls 1548/2412 (64%); p<0.001 for severe asthma versus non-asthma controls). Compared with mild/moderate asthma, morbidity rates for severe asthma were significantly higher for conditions associated with systemic steroid exposure (type II diabetes 10% vs 7%, OR=1.46 (95% CI 1.11 to 1.91), p<0.01; osteoporosis 16% vs 4%, OR=5.23, (95% CI 3.97 to 6.89), p<0.001; dyspeptic disorders (including gastric/duodenal ulceration) 65% vs 34%, OR=3.99, (95% CI 3.37 to 4.72), p<0.001; cataracts 9% vs 5%, OR=1.89, (95% CI 1.39 to 2.56), p<0.001). In the British Thoracic Society Difficult Asthma Registry similar prevalence rates were found, although, additionally, high rates of osteopenia (35%) and obstructive sleep apnoea (11%) were identified.
Conclusions: Oral corticosteroid-related adverse events are common in severe asthma. New treatments which reduce exposure to oral corticosteroids may reduce the prevalence of these conditions and this should be considered in cost-effectiveness analyses of these new treatments.
Resumo:
Background
Fluid administration to critically ill patients remains the subject of considerable controversy. While intravenous fluid given for resuscitation may be life-saving, a positive fluid balance over time is associated with worse outcomes in critical illness. The aim of this systematic review is to summarise the existing evidence regarding the relationship between fluid administration or balance and clinically important patient outcomes in critical illness.
Methods
We will search Medline, EMBASE, the Cochrane Central Register of Controlled Trials from 1980 to the present and key conference proceedings from 2009 to the present. We will include studies of critically ill adults and children with acute respiratory distress syndrome (ARDS), sepsis and systemic inflammatory response syndrome (SIRS). We will include randomised controlled trials comparing two or more fluid regimens of different volumes of fluid and observational studies reporting the relationship between volume of fluid administered or fluid balance and outcomes including mortality, lengths of intensive care unit and hospital stay and organ dysfunction. Two independent reviewers will assess articles for eligibility, data extraction and quality appraisal. We will conduct a narrative and/or meta-analysis as appropriate.
Discussion
While fluid management has been extensively studied and discussed in the critical care literature, no systematic review has attempted to summarise the evidence for post-resuscitation fluid strategies in critical illness. Results of the proposed systematic review will inform practice and the design of future clinical trials.
Systematic review registration
PROSPERO CRD42013005608. (http://www.crd.york.ac.uk/PROSPERO/)