974 resultados para SUPRAMOLECULAR SOFT MATERIALS
Resumo:
Low molecular weight gelators (LMWGs) based on pseudo-peptides are here studied for the preparation of supramolecular materials. These compounds can self-assemble through non-covalent interactions such as hydrogen bonds and π-π stacking, forming fibres and gels. A wide variety of materials can be prepared starting from these building blocks, which can be tuned and functionalised depending on the application. In this work, derivatives of the three aromatic amino acids L-Phenylalanine, L-Tyrosine and L-DOPA (3,4-dihydroxiphenylalanine) were synthesised and tested as gelators for water or organic solvents. First, the optimal gelating conditions were studied for each compound, varying concentration, solvent and trigger. Then the materials were characterised in terms of mechanical properties and morphology. Water remediation from dye pollution was the first focus of this work. Organogels were studied as absorbent of dyes from contaminated water. Hydrogels functionalised with TiO2 nanoparticles and graphene platelets were proposed as efficient materials for the photo-degradation of dyes. An efficient method for the incorporation of graphene inside hydrogels using the gelator itself as dispersant was proposed. In these materials a high storage modulus coexists with good self-healing and biocompatibility. The incorporation of a mineral phase inside the gel matrix was then investigated, leading to the preparation of composite organic/inorganic materials. In a first study, the growth of calcium carbonate crystals was achieved inside the hydrogel, which preserved its structure after crystal formation. Then the self-assembled fibres made of LMWGs were used for the first time instead of the polymeric ones as reinforcement inside calcium phosphate cements (CPCs) for bone regeneration. Gel-to-crystal transitions occurring with time in a metastable gel were also examined. The formation of organic crystals in gels can be achieved in multicomponent systems, in which a second gelator constitutes the independent gel network. Finally, some compounds unable to gelate were tested as underwater adhesives.
Resumo:
The possibility to control molar mass and termination of the growing chain is fundamental to create well-defined, reproducible materials. For this reason, in order to apply polydithienopyrrole (PDTP) as organic conjugated polymer, the possibility of controlled polymerization needs to be verified. Another aspect that is still not completely explored is bound to the optical activity of the PDTP, which bearing appropriate substituents may adopt a helical conformation. The configuration of the helix, built up from achiral co-monomers, can be established in an enantiopure way by using only a small percentage of the chiral monomer co-polymerized with achiral co-monomer. The effect, called “sergeants and soldiers effect”, is expressed by the nonlinear increase of the chiral response vs the ratio of the chiral co-monomer used for the polymerization. To date, this effect is still not completely explored for PDTP. In this framework the project will investigate, firstly, the possibility to obtain a controlled polymerization of PDTP. Then, monomers with different side chains and organometallic functions will be screened for a CTCP-type polymerization. Also a Lewis-acid based cationic polymerization will be performed. Moreover the chemical derivatization of dithienopyrrole DTP is explored: the research is going to concern also block copolymers, built up by DTP and monomers of different nature. The research will be extended also to the investigation of optically active derivates of PDTP, using a chiral monomer for the synthesis. The possibility to develop a supramolecular distribution of the polymeric chains, together with the “sergeants and soldiers effect” will be checked investigating a series of polymers with increasing amounts of chiral monomer.
Resumo:
Nowadays, one of the most ambitious challenges in soft robotics is the development of actuators capable to achieve performance comparable to skeletal muscles. Scientists have been working for decades, inspired by Nature, to mimic both their complex structure and their perfectly balanced features in terms of linear contraction, force-to-weight ratio, scalability and flexibility. The present Thesis, contextualized within the FET open Horizon 2020 project MAGNIFY, aims to develop a new family of innovative flexible actuators in the field of soft-robotics. For the realization of this actuator, a biomimetic approach has been chosen, drawing inspiration from skeletal muscle. Their hierarchical fibrous structure was mimicked employing the electrospinning technique, while the contraction of sarcomeres was designed employing chains of molecular machines, supramolecular systems capable of performing movements useful to execute specific tasks. The first part deals with the design and production of the basic unit of the artificial muscle, the artificial myofibril, consisting in a novel electrospun core-shell nanofiber, with elastomeric shell and electrically conductive core, coupled with a conductive coating, for the realization of which numerous strategies have been investigated. The second part deals instead with the integration of molecular machines (provided by the project partners) inside these artificial myofibrils, preceded by the study of several model molecules, aimed at simulating the presence of these molecular machines during the initial phases of the project. The last part concerns the realization of an electrospun multiscale hierarchical structure, aimed at reproducing the entire muscle morphology and fibrous organization. These research will be joined together in the near future like the pieces of a puzzle, recreating the artificial actuator most similar to biological muscle ever made, composed of millions of artificial myofibrils, electrically activated in which the nano-scale movement of molecular machines will be incrementally amplified to the macro-scale contraction of the artificial muscle.
Resumo:
The field of medical devices has experienced, more than others, technological advances, developments and innovations, thanks to the rapidly expanding scientific knowledge and collaboration between different disciplines such as biology, engineering and materials science. The design of functional components can be achieved by exploiting composite materials based on nanostructured smart materials, that due to the inherent characteristics of single constituents develop unique properties that make them suitable for different applications preserving excellent mechanical proprieties. For instance, recent developments have focused on the fabrication of piezoelectric devices with multiple biomedical functions, as actuation and sensing functions in one component for monitoring pressure signals. The present Ph.D. Thesis aims at investigating nanostructured smart materials embedded into a polymeric matrix to obtain a composite material that can be used as a functional component for medical devices. (i) Nanostructured piezoelectric material with self-sensing capability was successfully manufactured by using ceramic (i.e. lead zirconate titanate (PZT)) and (ii) polymeric (i.e. poly(vinylidene fluoride-trifluoro ethylene (PVDF-TRFE)) piezoelectric materials. PZT nanofibers were obtained by sol-gel electrospinning starting from synthetized PZT precursor solution. Synthesis, sol-gel electrospinning process, and thermal treatment were accurately controlled to obtain PZT nanofibers dimensionally stable with densely packed grains in the perovskite phase. To guarantee the impact resistance of the laminate, the morphology and size of the hosting filler were accurately designed by increasing the surface area to volume ratio. Moreover, to solve the issue relative to the mechanical discrepancy between rigid electronic materials/soft human tissues/different material of the device (iii) a nanostructured flexible composite material based on a network of Poly-L-lactic acid (PLLA) made of curled nanofibers that present a tuneable mechanical response as a function of the applied stress was successful fabricated.
Resumo:
The research developed in this thesis focused on the spectroscopic and photochemical characterization of molecular diazene photoswitches, both as individual species and as functional components of mechanically interlocked molecules, molecular-based materials and artificial molecular machines and motors. Among the plethora of photochromes reported so far, azobenzene is the most versatile photoswitch due to its reproducible and well-established photochemical properties. Part I of this thesis work focuses on the characterization of light-responsive supramolecular systems based on azobenzene: a photochemically-driven rotary motor, a light-responsive supramolecular polymeric material and a supramolecular system capable of photoinduced entantiodiscrimination. Despite the wide success of azobenzene photoswitches, the tunability of their photochemical properties as a function of the diversified substitution pattern on its aryl ring presents intrinsic limitations. To overcome this issue, in the last decade heteroaryl azoswitches (i.e., azobenzene having heterocyclic rings in place of one or both phenyl groups) have attracted a great deal of attention. Hence, Part II of this thesis work treats the photochemical characterization of two different families of azoheteroarenes embedding imidazolium and thienyl functionalities in their structures. Their potential implementation in water-soluble artificial molecular machines and light-effected semiconductor materials is also assessed.
Resumo:
The thesis is dedicated to the implementation of advanced x-ray-based techniques for the investigation of the battery systems, more predominantly, the cathode materials. The implemented characterisation methods include synchrotron based x-ray absorption spectroscopy, powder x-ray diffraction, 2-dimensional x-ray fluorescence, full field transmission soft x-ray microscopy, and laboratory x-ray photoelectron spectroscopy. The research highlights the different areas of expertise for each described method, in terms of material characterisation, exploring their complementarities and intersections. The results are focused over manganese hexacyanoferrate and partially Ni substituted manganese hexacyanoferrate, through both organic and aqueous battery systems. In aqueous system, the modification of cathode composition has been observed with various techniques, indicating to the processes occurring in bulk, surface, locally or in long-range, including with the speciation by 2-dimensional scanning, and the time-resolution, by the implementation of the operando measurements. In organic media, the inhomogenisation of the cathode material during the aging process was investigated by the development of the special image treatment procedure for the maps, obtained from the transmission soft x-ray microscopy. It worth mentioning, that apart from the combination of the outcomes from the various x-ray measurements, the exploration of the new capabilities was also conducted, namely, probing the oxidation state of the element with the synchrotron-based 2-dimensional x-ray fluorescence technique, which, generally, with conventional set up, is not possible to achieve. The results and methodology from this thesis can, of course, be generalised on the characterisation of the other battery systems, and not only, as the x-ray techniques are one of the most informative and sophisticated methods for advanced structural investigation of the materials.
Resumo:
Histological and histochemical observations support the hypothesis that collagen fibers can link to elastic fibers. However, the resulting organization of elastin and collagen type complexes and differences between these materials in terms of macromolecular orientation and frequencies of their chemical vibrational groups have not yet been solved. This study aimed to investigate the macromolecular organization of pure elastin, collagen type I and elastin-collagen complexes using polarized light DIC-microscopy. Additionally, differences and similarities between pure elastin and collagen bundles (CB) were investigated by Fourier transform-infrared (FT-IR) microspectroscopy. Although elastin exhibited a faint birefringence, the elastin-collagen complex aggregates formed in solution exhibited a deep birefringence and formation of an ordered-supramolecular complex typical of collagen chiral structure. The FT-IR study revealed elastin and CB peptide NH groups involved in different types of H-bonding. More energy is absorbed in the vibrational transitions corresponding to CH, CH2 and CH3 groups (probably associated with the hydrophobicity demonstrated by 8-anilino-1-naphtalene sulfonic acid sodium salt [ANS] fluorescence), and to νCN, δNH and ωCH2 groups of elastin compared to CB. It is assumed that the α-helix contribution to the pure elastin amide I profile is 46.8%, whereas that of the B-sheet is 20% and that unordered structures contribute to the remaining percentage. An FT-IR profile library reveals that the elastin signature within the 1360-1189cm(-1) spectral range resembles that of Conex-Toray aramid fibers.
Resumo:
Unplanned excision of soft tissue sarcomas is common because benign soft tissue lesions are very frequent. This study evaluated the impact of unplanned resections on overall survival, local recurrence and distant metastasis in patients with soft tissue sarcomas of the extremities. In total, 52 patients who were diagnosed with soft tissue sarcomas between May 2001 and March 2011 were analyzed in a retrospective study. Of these patients, 29 (55.8%) had not undergone previous treatment and the remaining 23 (44.2%) patients had undergone prior resection of the tumor without oncological planning. All subsequent surgical procedures were performed at the same cancer referral center. The follow-up ranged from 6 to 122 months, with a mean of 39.89 months. Age, lesion size and depth, histological grade, surgical margins, overall survival, local and distant recurrence and adjuvant therapies were compared. Residual disease was observed in 91.3% of the re-resected specimens in the unplanned excision group, which exhibited greater numbers of superficial lesions, low histological grades and contaminated surgical margins compared with the re-resected specimens in the planned excision group. No differences were observed in local recurrence and 5-year overall survival between the groups, but distant metastases were significantly associated with planned excision after adjustment for the variables. There was no difference between patients undergoing unplanned excision and planned excision regarding local recurrence and overall survival. The planned excision group had a higher risk of distant metastasis, whereas there was a high rate of residual cancer in the unplanned excision group.
Resumo:
Although MRI is utilized for planning the resection of soft-tissue tumors, it is not always capable of differentiating benign from malignant lesions. The risk of local recurrence of soft-tissue sarcomas is increased when biopsies are performed before resection and by inadequate resections. PET associated with computed tomography using fluorodeoxyglucose labeled with fluorine-18 ((18)F-FDG PET/CT) may help differentiate between benign and malignant tumors, thus avoiding inadequate resections and making prior biopsies unnecessary. The purpose of this study was to evaluate the usefulness of (18)F-FDG PET/CT in differentiating benign from malignant solid soft-tissue lesions. Patients with solid lesions of the limbs or abdominal wall detected by MRI were submitted to (18)F-FDG PET/CT. The maximum standardized uptake value (SUVmax) cutoff was determined to differentiate malignant from benign tumors. Regardless of the (18)F-FDG PET/CT results all patients underwent biopsy and surgery. MRI was performed in 54 patients, and 10 patients were excluded because of purely lipomatose or cystic lesions. (18)F-FDG PET/CT was performed in the remaining 44 patients. Histopathology revealed 26 (59%) benign and 18 (41%) malignant soft-tissue lesions. A significant difference in SUVmax was observed between benign and malignant soft-tissue lesions. The SUVmax cutoff of 3.0 differentiated malignant from benign lesions with 100% sensitivity, 83.3% specificity, 89.6% accuracy, 78.3% positive predictive value, and 100% negative predictive value. (18)F-FDG PET/CT seems to be able to differentiate benign from malignant soft-tissue lesions with good accuracy and very high negative predictive value. Incorporating (18)F-FDG PET/CT into the diagnostic algorithm of these patients may prevent inadequate resections and unnecessary biopsies.
Resumo:
OBJECTIVE: This study aimed to compare skeletal, dentoalveolar and soft tissue characteristics in white and black Brazilian subjects presenting normal occlusions. MATERIAL AND METHODS: The sample comprised the lateral cephalograms of 106 untreated Brazilian subjects with normal occlusion, divided into two groups: Group 1- 50 white subjects (25 of each gender), at a mean age of 13.17 years (standard deviation 1.07); and Group 2- 56 black subjects (28 of each gender), at a mean age of 13.24 years (standard deviation 0.56). Variables studied were obtained from several cephalometric analyses. Independent t tests were used for intergroup comparison and to determine sexual dimorphism. RESULTS: black subjects presented a more protruded maxilla and mandible, a smaller chin prominence and a greater maxillomandibular discrepancy than white subjects. Blacks presented a more horizontal craniofacial growth pattern than whites. Maxillary and mandibular incisors presented more protruded and proclined in black subjects. The nasolabial angle was larger in whites. Upper and lower lips were more protruded in blacks than in whites. CONCLUSIONS: The present study found a bimaxillary skeletal, dentoalveolar and soft tissue protrusion in black Brazilian subjects compared to white Brazilian subjects, both groups with normal occlusion. Upper and lower lips showed to be more protruded in blacks, but lip thickness was similar in both groups.
Resumo:
Dental impression is an important step in the preparation of prostheses since it provides the reproduction of anatomic and surface details of teeth and adjacent structures. The objective of this study was to evaluate the linear dimensional alterations in gypsum dies obtained with different elastomeric materials, using a resin coping impression technique with individual shells. A master cast made of stainless steel with fixed prosthesis characteristics with two prepared abutment teeth was used to obtain the impressions. References points (A, B, C, D, E and F) were recorded on the occlusal and buccal surfaces of abutments to register the distances. The impressions were obtained using the following materials: polyether, mercaptan-polysulfide, addition silicone, and condensation silicone. The transfer impressions were made with custom trays and an irreversible hydrocolloid material and were poured with type IV gypsum. The distances between identified points in gypsum dies were measured using an optical microscope and the results were statistically analyzed by ANOVA (p < 0.05) and Tukey's test. The mean of the distances were registered as follows: addition silicone (AB = 13.6 µm, CD=15.0 µm, EF = 14.6 µm, GH=15.2 µm), mercaptan-polysulfide (AB = 36.0 µm, CD = 36.0 µm, EF = 39.6 µm, GH = 40.6 µm), polyether (AB = 35.2 µm, CD = 35.6 µm, EF = 39.4 µm, GH = 41.4 µm) and condensation silicone (AB = 69.2 µm, CD = 71.0 µm, EF = 80.6 µm, GH = 81.2 µm). All of the measurements found in gypsum dies were compared to those of a master cast. The results demonstrated that the addition silicone provides the best stability of the compounds tested, followed by polyether, polysulfide and condensation silicone. No statistical differences were obtained between polyether and mercaptan-polysulfide materials.
Resumo:
The aim of this study was to investigate the histological and histomorphometrical bone response to three Biosilicates with different crystal phases comparing them to Bioglass®45S5 implants used as control. Ceramic glass Biosilicate and Bioglass®45S5 implants were bilaterally inserted in rabbit femurs and harvested after 8 and 12 weeks. Histological examination did not revealed persistent inflammation or foreign body reaction at implantation sites. Bone and a layer of soft tissue were observed in close contact with the implant surfaces in the medullary canal. The connective tissue presented few elongated cells and collagen fibers located parallel to implant surface. Cortical portion after 8 weeks was the only area that demonstrated significant difference between all tested materials, with Biosilicate 1F and Biosilicate 2F presenting higher bone formation than Bioglass®45S5 and Biosilicate® vitreo (p=0.02). All other areas and periods were statistically non-significant (p>0.05). In conclusion, all tested materials were considered biocompatible, demonstrating surface bone formation and a satisfactory behavior at biological environment.
Resumo:
This study evaluated the response of the subcutaneous connective tissue of BALB/c mice to root filling materials indicated for primary teeth: zinc oxide/eugenol cement (ZOE), Calen paste thickened with zinc oxide (Calen/ZO) and Sealapex sealer. The mice (n=102) received polyethylene tube implants with the materials, thereby forming 11 groups, as follows: I, II, III: Calen/ZO for 7, 21 and 63 days, respectively; IV, V, VI: Sealapex for 7, 21 and 63 days, respectively; VII, VIII, IX: ZOE for 7, 21 and 63 days, respectively; X and XI: empty tube for 7 and 21 days, respectively. The biopsied tissues were submitted to histological analysis (descriptive analysis and semi-quantitative analysis using a scoring system for collagen fiber formation, tissue thickness and inflammatory infiltrate). A quantitative analysis was performed by measuring the area and thickness of the granulomatous reactionary tissue (GRT). Data were analyzed by Kruskal-Wallis, ANOVA and Tukey's post-hoc tests (?=0.05). There was no significant difference (p>0.05) among the materials with respect to collagen fiber formation or GRT thickness. However, Calen/ZO produced the least severe inflammatory infiltrate (p<0.05). The area of the GRT was significantly smaller (p<0.05) for Calen/ZO and Sealapex. In conclusion, Calen/ZO presented the best tissue reaction, followed by Sealapex and ZOE.
Resumo:
This study aimed to assess the response of apical and periapical tissues of dogs' teeth after root canal filling with different materials. Forty roots from dogs' premolars were prepared biomechanically and assigned to 4 groups filled with: Group I: commercial calcium hydroxide and polyethylene glycol-based paste (Calen®) thickened with zinc oxide; Group II: paste composed of iodoform, Rifocort® and camphorated paramonochlorophenol; Group III: zinc oxide-eugenol cement; Group IV: sterile saline. After 30 days, the samples were subjected to histological processing. The histopathological findings revealed that in Groups I and IV the apical and periapical regions exhibited normal appearance, with large number of fibers and cells and no resorption of mineralized tissues. In Group II, mild inflammatory infiltrate and mild edema were observed, with discrete fibrogenesis and bone resorption. Group III showed altered periapical region and thickened periodontal ligament with presence of inflammatory cells and edema. It may be concluded that the Calen paste thickened with zinc oxide yielded the best tissue response, being the most indicated material for root canal filling of primary teeth with pulp vitality.
Resumo:
This study evaluated in vitro the antibacterial activity of 4 root canal filling materials for primary teeth - zinc oxide and eugenol cement (ZOE), Calen paste thickened with zinc oxide (Calen/ZO), Sealapex sealer and EndoREZ sealer - against 5 bacterial strains commonly found in endodontic infections (Kocuria rhizophila, Enterococcus faecalis, Streptococcus mutans, Escherichia coli and Staphylococcus aureus) using the agar diffusion test (agar-well technique). Calen paste, 1% chlorhexidine digluconate (CHX) and distilled water served as controls. Seven wells per dish were made at equidistant points and immediately filled with the test and control materials. After incubation of the plates at 37oC for 24 h, the diameter of the zones of bacterial growth inhibition produced around the wells was measured (in mm) with a digital caliper under reflected light. Data were analyzed statistically by analysis of variance and Tukey's post-hoc test (?=0.05). There were statistically significant differences (p<0.0001) among the zones of bacterial growth inhibition produced by the different materials against all target microorganisms. K. rhizophila was inhibited more effectively (p<0.05) by ZOE, while Calen/ZO had its highest antibacterial activity against E. faecalis (p<0.05). S. mutans was inhibited by Calen/ZO, Sealapex and ZOE in the same intensity (p>0.05). E. coli was inhibited more effectively (p<0.05) by ZOE, followed by Calen/ZO and Sealapex. Calen/ZO and ZOE were equally effective (p>0.05) against S. aureus, while Sealapex had the lowest antibacterial efficacy (p<0.05) against this microorganism. EndoREZ presented antibacterial activity only against K. rhizophila and S. aureus. The Calen paste and Calen/ZO produced larger zones of inhibition than 1% CHX when the marker microorganism was E faecalis. In conclusion, the in vitro antibacterial activity of the 4 root canal filling materials for primary teeth against bacterial strains commonly found in endodontic infections can be presented in a decreasing order of efficacy as follows: ZOE>Calen/ZO>Sealapex>EndoREZ.