313 resultados para SUBGENUS SCHIZOTRYPANUM
Resumo:
Phylogenetic relationships in the largely South African genus Muraltia (Polygalaceae) are assessed based on DNA sequence data (nuclear ribosomal ITS, plastid atpB-rbcL spacer, trnL intron, and trnL-F spacer) for 73 of the 117 currently recognized species in the genus. The previously recognised subgenus Muraltia is monophyletic, but the South African endemic genus Nylandtia is embedded in Muraltia subgenus Psiloclada. Subgenus Muraltia is found to be sister to subgenus Psiloclada. Estimates show the beginning of diversification of the two subgenera in the early Miocene (Psiloclada, 19.3+/-3.4 Ma; Muraltia, 21.0+/-3.5 Ma) pre-dating the establishment of the Benguela current (intermittent in the middle to late Oligocene and markedly intensifying in the late Miocene), and summer-dry climate in the Cape region. However, the later increase in species numbers is contemporaneous with these climatic phenomena. Results of dispersal-vicariance analyses indicate that major clades in Muraltia diversified from the southwestern and northwestern Cape, where most of the species are found today.
Resumo:
Nylandtia (Polygalaceae) is a small South African genus of two or more species distributed mainly in the Cape region. Previous studies based on anatomical, morphological and molecular data have already revealed a close relationship between Nylandtia and Muraltia, a genus of 117 species that is nearly endemic to South Africa. New evidence from molecular studies of family Polygalaceae and genus Muraltia shows that Nylandtia is derived from genus Muraltia, and is nested in Muraltia subgenus Psiloclada. These results have prompted a morphological re-evaluation of the genera Nylandtia and Muraltia, supporting the conclusion that the two species of Nylandtia currently recognized, N. spinosa and N. scoparia, should be included in subgenus Psiloclada within the genus Muraltia. Only one nomenclatural change is necessary: Muraltia spinosa (L.) E Forest & J. C. Manning, comb. nov.
Resumo:
We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of evolutionary responses to climate change.
Resumo:
Nine different classifications have been produced in the last 70 years for the horticulturally valuable genus Cyclamen, a small genus with fewer than 30 species. These classifications, generated by intuitive methods and cladistic analyses, incorporated a total of four infrageneric ranks above that of species and were based on data from morphology, cytology and DNA sequencing. Our results, based on cladistic analyses of three independent data sources − nrDNA ITS, cpDNA trnL intron and morphological data − reveal good resolution only in nrDNA sequence data. However, when these three data sources are combined they provide stronger resolution and support for three major clades, only one of which, subgenus Psilanthum, has been consistently supported in previous classifications. The differing infrageneric classifications produced in Cyclamen result from varying taxon sampling, differing interpretation of morphological data, changes in the sources and analysis of data, and inconsistent application of names. Extensive subdivision of small genera in the absence of adequate data that could provide evidence for consistent patterns of relationship is premature and leads to a proliferation of names.© 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 146, 339-349.
Resumo:
Species of the genus Culex Linnaeus have been incriminated as the main vectors of lymphatic filariases and are important vectors of arboviruses, including West Nile virus. Sequences corresponding to a fragment of 478 bp of the cytochrome c oxidase subunit I gene, which includes part of the barcode region, of 37 individuals of 17 species of genus Culex were generated to establish relationships among five subgenera, Culex, Phenacomyia, Melanoconion, Microculex, and Carrollia, and one species of the genus Lutzia that occurs in Brazil. Bayesian methods were employed for the phylogenetic analyses. Results of sequence comparisons showed that individuals identified as Culex dolosus, Culex mollis, and Culex imitator possess high intraspecific divergence (3.1, 2.3, and 3.5%, respectively) when using the Kimura two parameters model. These differences were associated either with distinct morphological characteristics of the male genitalia or larval and pupal stages, suggesting that these may represent species complexes. The Bayesian topology suggested that the genus and subgenus Culex are paraphyletic relative to Lutzia and Phenacomyia, respectively. The cytochrome c oxidase subunit I sequences may be a useful tool to both estimate phylogenetic relationships and identify morphologically similar species of the genus Culex.
Resumo:
An increase in cutaneous and visceral leishmaniasis cases has been reported in recent years in the state of Mato Grosso do Sul, Brazil, and little is known to date about their etiological agents. An investigation into natural Leishmania infection of sand flies captured in this state between December 2003 and August 2004 was carried out. Mini-exon sequences were used as targets to identify Leishmania, and an RFLP technique was employed for those identified as belonging to the Viannia subgenus. Calculation of the minimal infection rate (MR) revealed that 1.6% of sand flies captured in the forest, peridomicile and intradomicile were positive. Six species were found to be infected by Leishmania (V.) braziliensis. Interestingly, two of the six species. Lutzomyia longipalpis and Nyssomyia whitmani, were captured in anthropic environments. The findings of this study constitute a useful tool for planning control measures against this disease in the State of Mato Grosso do Sul. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Phylogenetic relationships among 21 species of mosquitoes in subgenus Nyssorhynchus were inferred from the nuclear white and mitochondrial NADH dehydrogenase subunit 6 (ND6) genes. Bayestan phylogenetic methods found that none of the three Sections within Nyssorhynchus (Albimanus, Argyritarsis, Myzorhynchella) were supported in all analyses, although Myzorhynchella was found to be monophyletic at the combined genes Within the Albimanus Section the monophyly of the Stroder Subgroup was strongly supported and within the Myzorhynchella Section Anopheles anrunesi and An lutzu formed a strongly supported monophyletic group The epidemiologically significant Albitarsis Complex showed evidence of paraphyly (relative to An lanet-Myzorhynchella) and discordance across gene trees, and the previously synonomized species of An. dunhami and An goeldii were recovered as sister species Finally, there was evidence of complexes in several species, including An antunesi, An deaneorum, and An. strodei (c) 2010 Elsevier B.V. All rights reserved
Resumo:
A new species of Baccharis sect. Caulopterae endemic to rocky cliffs in southern Brazil, is here described as Baccharis scopulorum. This new species is characterized by the general presence of basal and persistent leaves, mostly solitary capitula born at the tips of the branches, and many flowered capitula, the pistillate capitula with an urceolate to campanulate involucres. The new species is morphologically most similar to B. altimontana and B. opuntioides, both inhabiting mountain summits in eastern Brazil. A description of B. scopulorum, together with illustrations, a distribution map, habitat description, conservation assessment and diagnostic comparison with B. altimontana and B. opuntioides is presented.
Resumo:
Baccharis dichotoma, a new dwarf shrubby species, with small leaves and few heads, of high-altitude grasslands from southeastern Brazil, is described, illustrated, and assigned to subgenus Baccharis.
Resumo:
A new species of Rhipsalis (Cactaceae) from Rio de Janeiro State, in southwestern Brazil, is described and illustrated. The new Rhipsalis aurea is circumscribed in the subgenus Eryhtrorhipsalis and is morphologically most similar to R. pulchra Loefgr., but is distinct by the smaller, suberect habit, smaller secondary stem segments of determinated growth, golden yellow flowers, depressed-globose fruit, and epidermis and pollen grain features. Following the IUCN criteria this new species is vulnerable due to its restricted area of occurrence and reduction of the quality of habitat observed in the present and projected for the future. A taxonomic key to the subgenus Erythrorhipsalis is included.
Resumo:
Flies of the tribe Muscini (Diptera, Muscidae) are worldwide in distribution and are represented by some 350 species in 18 genera. The present study provides an identification key and diagnoses for all the genera of world Muscini: Biopyrellia Townsend, Curranosia Paterson, Dasyphora Robineau-Desvoidy, Deltotus Seguy, Hennigmyia Peris, Mesembrina Meigen, Mitroplatia Enderlein, Morellia Robineau-Desvoidy, Musca Linnaeus, Myiophaea Enderlein, Neomyia Walker, Neorypellia Pont, Polietes Rondani, Polietina Schnabl & Dziedzicki, Pyrellia Robineau-Desvoidy, Pyrellina Malloch, Sarcopromusca Townsend, Ziminellia Nihei & de Carvalho. Most infrageneric taxa are also represented, namely, the sub-genera of Dasyphora and Morellia. Comments on phylogeny support (whenever pertinent) and the major references containing revisions and regional identification keys to species are provided for each genus and subgenus.
Resumo:
In this study, we addressed the phylogenetic and taxonomic relationships of Trypanosoma vivax and related trypanosomes nested in the subgenus Duttonella through combined morphological and phylogeographical analyses. We previously demonstrated that the clade T. vivax harbours a homogeneous clade comprising West African/South American isolates and the heterogeneous East African isolates. Herein we characterized a trypanosome isolated from a nyala antelope (Tragelaphus angasi) wild-caught in Mozambique (East Africa) and diagnosed as T. vivax-like based on biological, morphological and molecular data. Phylogenetic relationships, phylogeographical patterns and estimates of genetic divergence were based on SSU and ITS rDNA sequences of T. vivax from Brazil and Venezuela (South America), Nigeria (West Africa), and from T. vivax-like trypanosomes from Mozambique, Kenya and Tanzania (East Africa). Despite being well-supported within the T. vivax clade, the nyala trypanosome was highly divergent from all other T. vivax and T. vivax-like trypanosomes, even those from East Africa. Considering its host origin, morphological features, behaviour in experimentally infected goats, phylogenetic placement, and genetic divergence this isolate represents a new genotype of trypanosome closely phylogenetically related to T. vivax. This study corroborated the high complexity and the existence of distinct genotypes yet undescribed within the subgenus Duttonella.
Resumo:
A real-time polymerase chain reaction (PCR) test was developed on the basis of the Leishmania glucose-6-phosphate dehydrogenase locus that enables identification and quantification of parasites. Using two independent pairs of primers in SYBR-Green assays, the test identified etiologic agents of cutaneous leishmaniasis belonging to both subgenera, Leishmania (Viannia) and Leishmania (Leishmania) in the Americas. Furthermore, use of TaqMan probes enables distinction between L. (V.) braziliensis or L. (V.) peruviania from the other L. (Viannia) species. All assays were negative with DNA of related trypanosomatids, humans, and mice. The parasite burden was estimated by normalizing the number of organisms per total amount of DNA in the sample or per host glyceraldehyde-3-phosphate dehydrogenase copies. The real-time PCR assay for L. (Leishmania) subgenus showed a good linear correlation with quantification on the basis of a limiting dilution assay in experimentally infected mice. The test successfully identifies and quantifies Leishmania in human biopsy specimens and represents a new tool to study leishmaniasis.
Resumo:
Parasites of wild primates are important for conservation biology and human health due to their high potential to infect humans. In the Amazon region, non-human primates are commonly infected by Trypanosoma cruzi and T rangeli, which are also infective to man and several mammals. This is the first survey of trypanosomiasis in a critically endangered species of tamarin, Saguinus bicolor (Callitrichidae), from the Brazilian Amazon Rainforest. Of the 96 free-ranging specimens of S. bicolor examined 45 (46.8%) yielded blood smears positive for trypanosomes. T rangeli was detected in blood smears of 38 monkeys (39.6%) whereas T. cruzi was never detected. Seven animals (7.3%) presented trypanosomes of the subgenus Megatrypanum. Hemocultures detected 84 positive tamarins (87.5%). Seventy-two of 84 (85.7%) were morphologically diagnosed as T rangeli and 3 (3.1%) as T. cruzi. Nine tamarins (9.4%) yielded mixed cultures of these two species, which after successive passages generated six cultures exclusively of T. cruzi and two of T rangeli, with only one culture remaining mixed. Of the 72 cultures positive for T rangeli, 62 remained as established cultures and were genotyped: 8 were assigned to phylogenetic lineage A (12.9%) and 54 to lineage B (87.1%). Ten established cultures of T. cruzi were genotyped as TCI lineage (100%). Transmission of both trypanosome species, their potential risk to this endangered species and the role of wild primates as reservoirs for trypanosomes infective to humans are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We characterized four Brazilian trypanosomes isolated from domestic rats and three from captive nonhuman primates that were morphologically similar to T. lewisi, a considered non-pathogenic species restricted to rodents and transmitted by fleas, despite its potential pathogenicity for infants. These isolates were identified as T. lewisi by barcoding using V7V8 SSU rDNA sequences. In inferred phylogenetic trees, all isolates clustered tightly with reference T. lewisi and T. lewisi-like trypanosomes from Europe, Asia and Africa and despite their high sequence conservation formed a homogeneous clade separate from other species of the subgenus T. (Herpetosoma). With the aim of clearly resolving the relationships between the Brazilian isolates from domestic rats and primates, we compared sequences from more polymorphic ITS rDNA. Results corroborated that isolates from Brazilian rats and monkeys were indeed of the same species and quite close to T. lewisi isolates of humans and rats from different geographical regions. Morphology of the monkey isolates and their behaviour in culture and in experimentally infected rats were also compatible with T. lewisi. However, infection with T. lewisi is rare among monkeys. We have examined more than 200 free-ranging and 160 captive monkeys and found only three infected individuals among the monkeys held in captivity. The findings of this work suggest that proximity of monkeys and infected rats and their exposure to infected fleas may be responsible for the host switching of T. Iewisi from their natural rodent species to primates. This and previous studies reporting T. lewisi in humans suggest that this trypanosome can cause sporadic and opportunistic fleaborne infection in primates. (C) 2010 Elsevier B.V. All rights reserved.