985 resultados para STOCHASTIC AUTOMATA NETWORKS
Resumo:
We show that stochastic electrodynamics and quantum mechanics give quantitatively different predictions for the quantum nondemolition (QND) correlations in travelling wave second harmonic generation. Using phase space methods and stochastic integration, we calculate correlations in both the positive-P and truncated Wigner representations, the latter being equivalent to the semi-classical theory of stochastic electrodynamics. We show that the semiclassical results are different in the regions where the system performs best in relation to the QND criteria, and that they significantly overestimate the performance in these regions. (C) 2001 Published by Elsevier Science B.V.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
We introduce a model for the dynamics of a patchy population in a stochastic environment and derive a criterion for its persistence. This criterion is based on the geometric mean (GM) through time of the spatial-arithmetic mean of growth rates. For the population to persist, the GM has to be greater than or equal to1. The GM increases with the number of patches (because the sampling error is reduced) and decreases with both the variance and the spatial covariance of growth rates. We derive analytical expressions for the minimum number of patches (and the maximum harvesting rate) required for the persistence of the population. As the magnitude of environmental fluctuations increases, the number of patches required for persistence increases, and the fraction of individuals that can be harvested decreases. The novelty of our approach is that we focus on Malthusian local population dynamics with high dispersal and strong environmental variability from year to year. Unlike previous models of patchy populations that assume an infinite number of patches, we focus specifically on the effect that the number of patches has on population persistence. Our work is therefore directly relevant to patchily distributed organisms that are restricted to a small number of habitat patches.
Resumo:
The splitting method is a simulation technique for the estimation of very small probabilities. In this technique, the sample paths are split into multiple copies, at various stages in the simulation. Of vital importance to the efficiency of the method is the Importance Function (IF). This function governs the placement of the thresholds or surfaces at which the paths are split. We derive a characterisation of the optimal IF and show that for multi-dimensional models the natural choice for the IF is usually not optimal. We also show how nearly optimal splitting surfaces can be derived or simulated using reverse time analysis. Our numerical experiments illustrate that by using the optimal IF, one can obtain a significant improvement in simulation efficiency.
Resumo:
In this paper, we consider testing for additivity in a class of nonparametric stochastic regression models. Two test statistics are constructed and their asymptotic distributions are established. We also conduct a small sample study for one of the test statistics through a simulated example. (C) 2002 Elsevier Science (USA).
Resumo:
In this paper we construct predictor-corrector (PC) methods based on the trivial predictor and stochastic implicit Runge-Kutta (RK) correctors for solving stochastic differential equations. Using the colored rooted tree theory and stochastic B-series, the order condition theorem is derived for constructing stochastic RK methods based on PC implementations. We also present detailed order conditions of the PC methods using stochastic implicit RK correctors with strong global order 1.0 and 1.5. A two-stage implicit RK method with strong global order 1.0 and a four-stage implicit RK method with strong global order 1.5 used as the correctors are constructed in this paper. The mean-square stability properties and numerical results of the PC methods based on these two implicit RK correctors are reported.
Resumo:
Stochastic differential equations (SDEs) arise from physical systems where the parameters describing the system can only be estimated or are subject to noise. Much work has been done recently on developing higher order Runge-Kutta methods for solving SDEs numerically. Fixed stepsize implementations of numerical methods have limitations when, for example, the SDE being solved is stiff as this forces the stepsize to be very small. This paper presents a completely general variable stepsize implementation of an embedded Runge Kutta pair for solving SDEs numerically; in this implementation, there is no restriction on the value used for the stepsize, and it is demonstrated that the integration remains on the correct Brownian path.
Quantification and assessment of fault uncertainty and risk using stochastic conditional simulations
Resumo:
Using benthic habitat data from the Florida Keys (USA), we demonstrate how siting algorithms can help identify potential networks of marine reserves that comprehensively represent target habitat types. We applied a flexible optimization tool-simulated annealing-to represent a fixed proportion of different marine habitat types within a geographic area. We investigated the relative influence of spatial information, planning-unit size, detail of habitat classification, and magnitude of the overall conservation goal on the resulting network scenarios. With this method, we were able to identify many adequate reserve systems that met the conservation goals, e.g., representing at least 20% of each conservation target (i.e., habitat type) while fulfilling the overall aim of minimizing the system area and perimeter. One of the most useful types of information provided by this siting algorithm comes from an irreplaceability analysis, which is a count of the number of, times unique planning units were included in reserve system scenarios. This analysis indicated that many different combinations of sites produced networks that met the conservation goals. While individual 1-km(2) areas were fairly interchangeable, the irreplaceability analysis highlighted larger areas within the planning region that were chosen consistently to meet the goals incorporated into the algorithm. Additionally, we found that reserve systems designed with a high degree of spatial clustering tended to have considerably less perimeter and larger overall areas in reserve-a configuration that may be preferable particularly for sociopolitical reasons. This exercise illustrates the value of using the simulated annealing algorithm to help site marine reserves: the approach makes efficient use of;available resources, can be used interactively by conservation decision makers, and offers biologically suitable alternative networks from which an effective system of marine reserves can be crafted.
Resumo:
Many large-scale stochastic systems, such as telecommunications networks, can be modelled using a continuous-time Markov chain. However, it is frequently the case that a satisfactory analysis of their time-dependent, or even equilibrium, behaviour is impossible. In this paper, we propose a new method of analyzing Markovian models, whereby the existing transition structure is replaced by a more amenable one. Using rates of transition given by the equilibrium expected rates of the corresponding transitions of the original chain, we are able to approximate its behaviour. We present two formulations of the idea of expected rates. The first provides a method for analysing time-dependent behaviour, while the second provides a highly accurate means of analysing equilibrium behaviour. We shall illustrate our approach with reference to a variety of models, giving particular attention to queueing and loss networks. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The article describes an attempt to improve student learning outcomes in a computer networks course by making lectures more active learning experiences. Quick quizzes, group and individual exercises, the review of student questions, as well as multiple breaks, were incorporated into the weekly three-hour lectures. Student responses to the modified lectures was overwhelmingly positive: over 85% of respondents agreed that the lectures aided understanding, with large majorities of the respondents finding the individual activities useful to their learning. Although student examination performance improved over the previous year, performance on an examination question that was designed to examine deep understanding remained unchanged.