998 resultados para SPIN-ORBIT INTERACTION
Resumo:
The interaction between the antimicrobial peptide gramicidin (Gr) and dipalmitoylphosphatidylcholine (DPPC)/dioctadecyldimethylammonium bromide (DODAB) 1:1 large unilamellar vesicles (LVs) or bilayer fragments (BFs) was evaluated by means of several techniques. The major methods were: 1) Gr intrinsic fluorescence and circular dichroism (CD) spectroscopy; 2) dynamic light scattering for sizing and zeta-potential analysis; 3) determination of the bilayer phase transition from extrinsic fluorescence of bilayer probes; 4) pictures of the dispersions for evaluation of coloidal stability over a range of time and NaCl concentration. For Gr in LVs, the Gr dimeric channel conformation is suggested from: 1) CD and intrinsic fluorescence spectra similar to those in trifluoroethanol (TFE); 2) KCl or glucose permeation through the LVs/Gr bilayer. For Gr in BFs, the intertwined dimeric, non-channel Gr conformation is evidenced by CD and intrinsic fluorescence spectra similar to those in ethanol. Both LVs and BFs shield Gr tryptophans against quenching by acrylamide but the Stern-Volmer quenching constant was slightly higher for Gr in BFs confirming that the peptide is more exposed to the water phase in BFs than in LVs. The DPPC/DODAB/Gr supramolecular assemblies may predict the behavior of other antimicrobial peptides in assemblies with lipids. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Miltefosine (MT) is an alkylphospholipid approved for breast cancer metastasis and visceral leishmaniasis treatments, although the respective action mechanisms at the molecular level remain poorly understood. In this work, the interaction of miltefosine with the lipid component of stratum corneum (SC), the uppermost skin layer, was studied by electron paramagnetic resonance (EPR) spectroscopy of several fatty acid spin-labels. In addition, the effect of miltefosine on (i) spherical lipid vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and (ii) lipids extracted from SC was also investigated, by EPR and time-resolved polarized fluorescence methods. In SC of neonatal Wistar rats, 4% (w/w) miltefosine give rise to a large increase of the fluidity of the intercellular membranes, in the temperature range from 6 to about 50 degrees C. This effect becomes negligible at temperatures higher that ca. 60 degrees C. In large unilamelar vesicles of DPPC no significant changes could be observed with a miltefosine concentration 25% molar, in close analogy with the behavior of biomimetic vesicles prepared with bovine brain ceramide, behenic acid and cholesterol. In these last samples, a 25 mol% molar concentration of miltefosine produced only a modest decrease in the bilayer fluidity. Although miltefosine is not a feasible skin permeation enhancer due to its toxicity, the information provided in this work could be of utility in the development of a MT topical treatment of cutaneous leishmaniasis. Published by Elsevier B.V.
Resumo:
Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called "portal region", formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that BFABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs.
Resumo:
The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.
Resumo:
Bei der Untersuchung molekularer magnetischer Materialien spielen Metall-Radikal Verbindungen eine bedeutende Rolle. Ein Forschungsschwerpunkt stützt sich auf die Familie der Nitronyl-Nitroxid (NIT) Radikale, die sich durch eine hohe chemische Stabilität auszeichnen. Im sogenannten „Metall-Radikal Ansatz“ wurden die starken Austauschwechselwirkungen zwischen stabilen Radikalen und Übergangsmetallionen in mehrdimensionalen Netzwerken ausgiebig untersucht. Um diese Netzwerke mit NIT Radikalen aufzubauen, müssen zusätzliche funktionelle Gruppen, mit einem Abstand zur spintragenden Einheit, in das Molekül eingebaut werden. Dies kann zu einer zusätzlichen schwachen Spinaustauschwechselwirkung führen. Um diese Wechselwirkung zwischen Metalldimeren mit einem einzelnen Benzoat annalogen NIT-Radikal zu untersuchen, wurden dimere Mangan(II), Kobalt(II) und Zink(II) Komplexe mit dem Chelatliganden N,N,N',N'-Tetrakis(2-benzimid-azolylalkyl)-2-hydroxy-1,3-diamino-propan synthetisiert und zusätzlich über eine periphere Carboxylat Gruppe eines NIT Radikals verbrückt.rnDie Messungen der magnetischen Suszeptibilität weisen auf eine dominante antiferromagnetische Wechselwirkung in der Metall-Radikal Verbindung hin, bei der es sich um die Spin-Austauschwechselwirkung innerhalb des Metalldimers handelt. Durch den Vergleich mit analogen Nitrobenzoat- verbrückten Mangan(II) und Kobalt(II) Verbindungen konnte gezeigt werden, dass keine Metall-Radikal Wechselwirkung beobachtet wird, obwohl eine Wechselwirkung der pi*-orbitale mit den delokalisierten pi-System des Phenylrings durch Spin-Polarisation grundsätzlich möglich ist. Auch ESR - Messungen bestätigen dies, da der Spingrundzustand das anisotrope Signal des freien NIT Radikals aufweist. Das Radikal verhält sich somit wie ein isoliertes S=1/2 Spin-Zentrum, was zusätzlich durch DFT-Rechnungen bekräftigt werden konnte. Zusammenfassend führt also die Koordination eines NIT-Benzoats an ein antiferromagnetisch gekoppeltes Metalldimer nur zur Anhebung des Spingrundzustandes und hat keinen signifikanten Effekt auf die Austauschwechselwirkung. Um trotzdem eine Metall-Radikal Wechselwirkung beobachten zu können, ist es notwendig Koordinationsverbindungen zu synthetisieren in denen hohe Spingrundzustände besetzt werden. Dies trifft auf das analoge Kupferdimer zu, wofür eine ferromagnetische Wechselwirkung zu beobachten ist.rnNach den Regeln der Spin-Polarisation müsste die Verkürzung des Austauschpfades um eine Bindung zu einer Umkehrung des Vorzeichens der magnetischen Wechselwirkung führen. Diese Verkürzung kann man durch die Verwendung des alternativen stabilen NOA-Radikals (tert-Butyl Nitroxid) erreichen. Sowohl das NIT als auch das NOA-Radikal werden an ein Kupfer(II)-dimer koordiniert, das durch die Verwendung des oben erwähnten N6O-Liganden gebildet wurde. In der Modellverbindung, ohne einen paramagnetischen Substituenten am Benzoat, zeigen die Kupferionen eine ferromagnetische Wechselwirkung mit einem Triplett Grundzustand, dessen Existenz durch die Messung der magnetischen Suszeptibilität und ESR-Spektroskopie belegt werden kann. Aufgrund der nahezu identischen Koordinationsumgebung bleibt bei allen synthetisierten Verbindungen die Kupfer-Kupfer Wechselwirkung dabei gleich. Die Daten von ESR und magnetischen Messungen zeigen weiterhin auf eine signifikante zusätzliche Metall-Radikal Wechselwirkung hin. Bei der NIT-Verbindung ist diese Austauschwechselwirkung schwach antiferromagnetisch, während die NOA-Verbindung eine schwache ferromagnetische Kopplung aufzeigt. Diese Resultate können durch DFT Rechnungen bekräftigt werden. Der Vorzeichenwechsel des Kopplungsparameters kann durch die Verkürzung des Austauschpfades vom NIT zum NOA-Benzoat um eine Bindung erklärt werden. Durch die Wahl von geeigneten Radikal- Liganden und Metallionen, zeigt sich die Möglichkeit, Systeme zu erzeugen, in denen die Radikal-Metall Wechselwirkung auch über größere Distanzen den Spin-Grundzustand des gesamten Systems signifikant beeinflussen kann. die Anwendung dieses Konzeptes auf Metall-Radikal Cluster System sollte Von großem Interesse sein.rn
Resumo:
Light pseudoscalar bosons, such as the axion that was originally proposed as a solution of the strong CP problem, would cause a new spin-dependent short-range interaction. In this thesis, an experiment is presented to search for axion mediated short-range interaction between a nucleon and the spin of a polarized bound neutron. This interaction cause a shift in the precession frequency of nuclear spin-polarized gases in the presence of an unpolarized mass. To get rid of magnetic field drifts co-located, nuclear spin polarized 3He and 129Xe atoms were used. The free nuclear spin precession frequencies were measured in a homogeneous magnetic guiding field of about 350nT using LTc SQUID detectors. The whole setup was housed in a magnetically shielded room at the Physikalisch Technische Bundesanstalt (PTB) in Berlin. With this setup long nuclear spin-coherence times, respectively, transverse relaxation times of 5h for 129Xe and 53h for 3He could be achieved. The results of the last run in September 2010 are presented which give new upper limits on the scalar-pseudoscalar coupling of axion-like particles in the axion-mass window from 10^(-2) eV to 10^(-6) eV. The laboratory upper bounds were improved by up to 4 orders of magnitude.
Resumo:
Ziel dieser Arbeit war es, ein System zu entwickeln, in dem ein durch Licht induzierter Elektronentransfer stattfinden kann. Dazu wurden ein Kupfer(II)- und ein Zink(II)Tetraazaporphyrin mit acht 4-tert-Butylphenyl-Substituenten synthetisiert (Cu4Dinit, Zn4Dinit). Die Energielücke von 1,85 eV zwischen HOMO und LUMO von Cu4Dinit in Lösung wurde mit Hilfe von Cyclovoltammetrie und UV/Vis-Messungen bestimmt. Somit ist sie größer als für Cu4Dinit Moleküle, die auf einer Oberfläche (Wolfram(100)) liegen und mit STM-, STS-Messungen untersucht wurden. Hier beträgt die Energielücke 1,35 eV, was durch eine Drehung der Phenylringe in die Ebene der Pyrrolringe des Makrozyklus und somit durch eine bessere Überlappung der Orbitale erklärt werden kann. Um die Wechselwirkung der Moleküle mit der Oberfläche zu untersuchen, wurde Cu4Dinit, wie oben beschrieben, auf Magnetit aufgedampft. Dadurch wurde ausschließlich die Wechselwirkung zwischen den Elektronenspins des Kupfer(II)-ions und den Elektronenspins des Eisens im Magnetit betrachtet. Durch Messungen der Röntgenabsorption und des XMCD-Effektes konnten das Spinmoment, Bahnmoment und das Gesamtmoment des Kupfers berechnet und eine anisotrope Kopplung des Elektronenspins des Kupferions zum Magnetit, in Abhängigkeit der Magnetisierungsrichtung des Magnetits, festgestellt werden. Wenn der Magnetit senkrecht zur Oberfläche (out-of-plane) magnetisiert ist, ist die Kopplung ferromagnetisch, während bei einer Magnetisierungsrichtung parallel zur Ebene (in-plane) des Magnetits der Elektronenspin des Kupfers antiferromagnetisch mit dem des Eisens koppelt. Dadurch muss der Hamiltonian, der die Wechselwirkung zwischen zwei Spins beschreibt, bei einer anisotropen Kopplung um einen ansiotropen Term ergänzt werden. Das Ergebnis, dass der Elektronenspin des Kupferions durch die Richtung der Magnetisierung des Magnetits beeinflusst werden kann, eröffnet neue Wege, um die Spinkonfiguration von auf der Oberfläche liegenden Molekülen mit ungepaarten Elektronen, wie die zentralen Metallionen der Makrozyklen aber auch die Elektronenspins anderer metallorganischer Komplexe oder molekulare Magnete, durch ein externes Magnetfeld zu beeinflussen. rnDurch die stöchiometrische Templatreaktion von Pyrazino[2,3-f][1,10]-phenanthrolin-2,3-di-carbonitril (Dicnq), Bis(4-tert-Butylphenyl)-fumarodinitril (Dinit) und Kupfer(II)-acetat wurde eine Koordinationsmöglichkeit für ein Ruthenium(II)-ion in einem Tetraazaporphyrin hergestellt und so die Makrozyklen Cu3Dinit1Dicnq und Zn3Dinit1Dicnq synthetisiert, mit Rutheniumionen versetzt und ebenfalls mit Hilfe von Röntgenabsorptionsmessungen und XMCD untersucht. Durch die Vergleiche mit Zn3Dinit1Dicnq und den jeweiligen Verbindungen mit koordinierten Rutheniumionen (Cu3Dinit1Dicnq-1Ru, Zn3Dinit1Dicnq-1Ru) konnte gezeigt werden, dass eine Verschiebung der Elektronendichte des Rutheniumions zu dem zentralen Kupferion des Makrozyklus stattgefunden hat und durch die Koordination eines Rutheniumions in der Peripherie des Tetraazaporphyrins die energetische Lage der Kupferorbitale beeinflusst wird.rnDer Einfluss von vier koordinierten Ruthenium(II)-ionen auf das zentrale Kupferion wurde an Hand des in dieser Arbeit hergestellten Kupfer(II)phenanthralocyanins (Cu4Dicnq) untersucht, das aus vier Dicnq-Liganden und Kupfer(II)-acetat synthetisiert wurde. Auf Grund der schlechten Löslichkeit wurde für die Koordination der Rutheniumionen der Prekursor [Ru(bipy)2Dicnq](PF6)2 hergestellt und daraus der Makrozyklus in einer Templatsynthese mit Kufper(II)-ionen gebildet. Durch diese neue Syntheseroute war es möglich, die Verbindung Cu4Dicnq-4Ru herzustellen und ebenfalls durch Röntgenabsorption und XMCD zu untersuchen und so das Spin- und Bahnmoment zu ermitteln. Ein Teil der Elektronendichte des Rutheniumions in dieser Verbindung wird auf die zusätzlich an das Rutheniumion koordinierten 2,2'-Bipyridine und nicht auf den Makrozyklus, wie in Cu3Dinit1Dicnq-1Ru, geschoben. Trotzdem konnte die Funktionsweise als Modell des Photosystems II durch eine Oxidation durch die Bestrahlung mit einer Quecksilberlampe mit para-Benzochinon beobachtet werden. Dies bestätigte die Funktionsweise des Kupfer(II)phenanthralocyanins mit koordinierten Rutheniumionen, da ein durch Licht induzierter Elektronenübergang auf das para-Benzochinon stattgefunden hat.rn
Resumo:
ab-initio Hartree Fock (HF), density functional theory (DFT) and hybrid potentials were employed to compute the optimized lattice parameters and elastic properties of perovskite 3-d transition metal oxides. The optimized lattice parameters and elastic properties are interdependent in these materials. An interaction is observed between the electronic charge, spin and lattice degrees of freedom in 3-d transition metal oxides. The coupling between the electronic charge, spin and lattice structures originates due to localization of d-atomic orbitals. The coupling between the electronic charge, spin and crystalline lattice also contributes in the ferroelectric and ferromagnetic properties in perovskites. The cubic and tetragonal crystalline structures of perovskite transition metal oxides of ABO3 are studied. The electronic structure and the physics of 3-d perovskite materials is complex and less well considered. Moreover, the novelty of the electronic structure and properties of these perovskites transition metal oxides exceeds the challenge offered by their complex crystalline structures. To achieve the objective of understanding the structure and property relationship of these materials the first-principle computational method is employed. CRYSTAL09 code is employed for computing crystalline structure, elastic, ferromagnetic and other electronic properties. Second-order elastic constants (SOEC) and bulk moduli (B) are computed in an automated process by employing ELASTCON (elastic constants) and EOS (equation of state) programs in CRYSTAL09 code. ELASTCON, EOS and other computational algorithms are utilized to determine the elastic properties of tetragonal BaTiO3, rutile TiO2, cubic and tetragonal BaFeO3 and the ferromagentic properties of 3-d transition metal oxides. Multiple methods are employed to crosscheck the consistency of our computational results. Computational results have motivated us to explore the ferromagnetic properties of 3-d transition metal oxides. Billyscript and CRYSTAL09 code are employed to compute the optimized geometry of the cubic and tetragonal crystalline structure of transition metal oxides of Sc to Cu. Cubic crystalline structure is initially chosen to determine the effect of lattice strains on ferromagnetism due to the spin angular momentum of an electron. The 3-d transition metals and their oxides are challenging as the basis functions and potentials are not fully developed to address the complex physics of the transition metals. Moreover, perovskite crystalline structures are extremely challenging with respect to the quality of computations as the latter requires the well established methods. Ferroelectric and ferromagnetic properties of bulk, surfaces and interfaces are explored by employing CRYSTAL09 code. In our computations done on cubic TMOs of Sc-Fe it is observed that there is a coupling between the crystalline structure and FM/AFM spin polarization. Strained crystalline structures of 3-d transition metal oxides are subjected to changes in the electromagnetic and electronic properties. The electronic structure and properties of bulk, composites, surfaces of 3-d transition metal oxides are computed successfully.
Resumo:
The numerical simulations of the magnetic properties of extended three-dimensional networks containing M(II) ions with an S = 5/2 ground-state spin have been carried out within the framework of the isotropic Heisenberg model. Analytical expressions fitting the numerical simulations for the primitive cubic, diamond, together with (10−3) cubic networks have all been derived. With these empirical formulas in hands, we can now extract the interaction between the magnetic ions from the experimental data for these networks. In the case of the primitive cubic network, these expressions are directly compared with those from the high-temperature expansions of the partition function. A fit of the experimental data for three complexes, namely [(N(CH3)4][Mn(N3)] 1, [Mn(CN4)]n 2, and [FeII(bipy)3][MnII2(ox)3] 3, has been carried out. The best fits were those obtained using the following parameters, J = −3.5 cm-1, g = 2.01 (1); J = −8.3 cm-1, g = 1.95 (2); and J = −2.0 cm-1, g = 1.95 (3).
Resumo:
The field of molecule-based magnets is a relatively new branch of chemistry, which involves the design and study of molecular compounds that exhibit a spontaneous magnetic ordering below a critical temperature, Tc. One major goal involves the design of materials with tuneable Tc's for specific applications in memory storage devices. Molecule-based magnets with high magnetic ordering temperatures have recently been obtained from bimetallic and mixed-valence transition metal μ-cyanide complexes of the Prussian blue family. Since the μ-cyanide linkages permit an interaction between paramagnetic metal ions, cyanometalate building blocks have found useful applications in the field of molecule-based magnets. Our work involves the use of octacyanometalate building blocks for the self-assembly of two new classes of magnetic materials namely, high-spin molecular clusters which exhibit both ferromagnetic intra- and intercluster coupling, and specific extended network topologies which show long-range ferromagnetic ordering.
Resumo:
The population of space debris increased drastically during the last years. These objects have become a great threat for active satellites. Because the relative velocities between space debris and satellites are high, space debris objects may destroy active satellites through collisions. Furthermore, collisions involving massive objects produce large number of fragments leading to significant growth of the space debris population. The long term evolution of the debris population is essentially driven by so-called catastrophic collisions. An effective remediation measure in order to stabilize the population in Low Earth Orbit (LEO) is therefore the removal of large, massive space debris. To remove these objects, not only precise orbits, but also more detailed information about their attitude states will be required. One important property of an object targeted for removal is its spin period, spin axis orientation and their change over time. Rotating objects will produce periodic brightness variations with frequencies which are related to the spin periods. Such a brightness variation over time is called a light curve. Collecting, but also processing light curves is challenging due to several reasons. Light curves may be undersampled, low frequency components due to phase angle and atmospheric extinction changes may be present, and beat frequencies may occur when the rotation period is close to a multiple of the sampling period. Depending on the method which is used to extract the frequencies, also method-specific properties have to be taken into account. The astronomical Institute of the University of Bern (AIUB) light curve database will be introduced, which contains more than 1,300 light curves acquired over more than seven years. We will discuss properties and reliability of different time series analysis methods tested and currently used by AIUB for the light curve processing. Extracted frequencies and reconstructed phases for some interesting targets, e.g. GLONASS satellites, for which also SLR data were available for the period confirmation, will be presented. Finally we will present the reconstructed phase and its evolution over time of a High-Area-to-Mass-Ratio (HAMR) object, which AIUB observed for several years.
Resumo:
Periodic comets move around the Sun on elliptical orbits. As such comet 67P/Churyumov-Gerasimenko (hereafter 67P) spends a portion of time in the inner solar system where it is exposed to increased solar insolation. Therefore given the change in heliocentric distance, in case of 67P from aphelion at 5.68 AU to perihelion at ~1.24 AU, the comet’s activity—the production of neutral gas and dust—undergoes significant variations. As a consequence, during the inbound portion, the mass loading of the solar wind increases and extends to larger spatial scales. This paper investigates how this interaction changes the character of the plasma environment of the comet by means of multifluid MHD simulations. The multifluid MHD model is capable of separating the dynamics of the solar wind ions and the pick-up ions created through photoionization and electron impact ionization in the coma of the comet. We show how two of the major boundaries, the bow shock and the diamagnetic cavity, form and develop as the comet moves through the inner solar system. Likewise for 67P, although most likely shifted back in time with respect to perihelion passage, this process is reversed on the outbound portion of the orbit. The presented model herein is able to reproduce some of the key features previously only accessible to particle-based models that take full account of the ions’ gyration. The results shown herein are in decent agreement to these hybrid-type kinetic simulations.
Resumo:
A novel concept for active space debris removal known as Ion Beam Shepherd (IBS) which has been recently presented by our group is investigated. The concept makes use of a highly collimated ion beam to exert the necessary force on a generic debris to modify its orbit and/or attitude from a safe distance in a controlled manner, without the need of docking. After describing the main characteristics of the IBS system, some of the key aspects of thruster plasma and its interaction with the debris are studied, namely, (1) the modeling of the expansion of an plasma beam, based on the quasi-selfsimilarity exhibited by hypersonic plumes, (2) the characterization of the force and torque exerted upon the target debris, and (3) a preliminary evaluation of other plasma-body interactions.
Resumo:
A 3-year Project financed by the European Commission is aimed at developing a universal system to de-orbit satellites at their end of life, as a fundamental contribution to limit the increase of debris in the Space environment. The operational system involves a conductive tapetether left bare to establish anodic contact with the ambient plasma as a giant Langmuir probe. The Project will size the three disparate dimensions of a tape for a selected de-orbit mission and determine scaling laws to allow system design for a general mission. Starting at the second year, mission selection is carried out while developing numerical codes to implement control laws on tether dynamics in/off the orbital plane; performing numerical simulations and plasma chamber measurements on tether-plasma interaction; and completing design of subsystems: electronejecting plasma contactor, power module, interface elements, deployment mechanism, and tether-tape/end-mass. This will be followed by subsystems manufacturing and by currentcollection, free-fall, and hypervelocity impact tests.
Resumo:
An electrodynamic bare tether is shown to allow carrying out scientific observations very close to Jupiter, for exploration of its surface and subsurface, and ionospheric and atmospheric in-situ measurements. Starting at a circular equatorial orbit of radius about 1.3/1.4 times the Jovian radius, continuous propellantless Lorentz drag on a thin-tape tether in the 1-5 km length range would make a spacecraft many times as heavy as the tape slowly spiral in, over a period of many months, while generating power at a load plugged in the tether circuit for powering instruments in science data acquisition and transmission. Lying under the Jovian radiation belts, the tape would avoid the most severe problem facing tethers in Jupiter, which are capable of producing both power and propulsion but, operating slowly, could otherwise accumulate too high a radiation dose . The tether would be made to spin in its orbit to keep taut; how to balance the Lorentz torque is discussed. Constraints on heating and bowing are also discussed, comparing conditions for prograde versus retrograde orbits. The system adapts well to the moderate changes in plasma density and motional electric field through the limited radial range in their steep gradients near Jupiter.