934 resultados para SPECIES DISTRIBUTION MODELS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The cloud forest is a special type of forest ecosystem that depends on suitable conditions of humidity and temperature to exist; hence, it is a very fragile ecosystem. The cloud forest is also one of the richest ecosystems in terms of species diversity and rate of endemism. However, today, it is one of the most threatened ecosystems in the world. Little is known about tree species distribution and coexistence among cloud forest trees. Trees are essential to understanding ecosystem functioning and maintenance because they support the ecosystem in important ways. For this dissertation, an analysis of woody plant species distribution at a small scale in a north-Peruvian Andean cloud forest was performed, and some of the factors implicated in the observed patterns were identified. Towards that end, different natural factors acting on species distribution within the forest were investigated: (i) intra-specific arrangements, (ii) heterospecific spatial relationships and (iii) relationships with external environmental factors. These analyses were conducted first on standing woody plants and then on seedlings. The woody plants were found to be clumped in the forest, either considering all the species together or each species separately. However, each species presented a specific pattern and specific spatial relationship among different-age individuals. Dispersal mode, growth form and shade tolerance played roles in the final distribution of the species. Furthermore, spatial associations among species, either positive or negative, were observed. These associations were more numerous when considering individuals of the interacting species at different developmental stages, i.e., younger individuals from one species and older individuals from another. Accordingly, competition and facilitation are asymmetric processes and vary throughout the life of an individual. Moreover, some species appear to prefer certain habitat conditions and avoid other habitats. The habitat definition that best explains species distribution is that which includes both environmental and stand characteristics; thus, a combination of these factors is necessary to understanding species' niche preferences. Seedling distribution was also associated with habitat conditions, but these conditions explained less than the 30% of the spatial variation. The position of conspecific adult individuals also affected seedling distribution; although the seedlings of many tree species avoid the vicinity of conspecifics, a few species appeared to prefer the formation of cohorts around their parent trees. The importance of habitat conditions and distance dependence with conspecifics varied among regions within the forest as well as on the developmental stage of the stand. The results from this thesis suggest that different species can coexist within a given space, forming a “puzzle” of species as a result of the intra- and interspecific spatial relationships along with niche preferences and adaptations that operate at different scales. These factors not only affect each species in a different way, but specific preferences also vary throughout species' lifespans. Resumen Resumen El bosque de niebla es uno de los ecosistemas más amenazados del mundo además de ser uno de los más frágiles. Son formaciones azonales que dependen de la existencia de unas condiciones de humedad y temperatura que permitan la formación de nubes que cubran el bosque; lo que dificulta en gran medida su conservación. También es uno de los ecosistemas con mayor riqueza de especies además de tener uno de los mayores porcentajes de endemismos. Uno de los aspectos más importantes para entender el ecosistema, es identificar y entender los elementos que lo componen y los mecanismos que regulan las relaciones entre ellos. Los árboles son el soporte del ecosistema. Sin embargo, apenas hay información sobre la distribución y coexistencia de los árboles en los bosques de niebla. Esta tesis presenta un análisis de la distribución a pequeña escala de las plantas leñosas en un bosque de niebla situado en la cordillera andina del norte de Perú; así como el análisis de algunos de los factores que pueden estar implicados en que se origine la distribución observada. Para este propósito se estudia cómo influyen factores de diferente naturaleza en la distribución de las especies (i) organización intra-específica (ii) relaciones espaciales heterospecíficas y (iii) relación con factores ambientales externos. En estos análisis se estudiaron primero las plantas jóvenes y las adultas, y después las plántulas. Los árboles aparecieron agregados en el bosque, tanto considerando todos a la vez como cuando se estudió cada especie por separado. Sin embargo, cada especie mostró un patrón distinto así como una particular relación espacial entre individuos jóvenes y adultos. El modo de dispersión, la forma de vida y la tolerancia de la especies estuvieron relacionados con el patrón general observado. Se vio también que ciertas especies aparecían relacionadas con otras, tanto de forma positiva (compartiendo zonas) como negativa (apareciendo en áreas distintas). Las asociaciones fueron mucho más numerosas cuando se consideraron los pares de especies en diferente estado de desarrollo, es decir, individuos jóvenes de una especie e individuos mayores de la otra. Eso indicaría que los procesos de competencia y facilitación son asimétricos y además varían durante la vida de la planta. Por otro lado, algunas especies aparecen preferentemente bajo ciertas condiciones de hábitat y evitan otras. La definición de hábitat a la que mejor responden las especies es cuando se incluyen tanto variables ambientales como de masa; así que ambos tipos de variables son necesarias para entender la preferencia de las especies por ciertos nichos. La distribución de las plántulas también estuvo relacionada con condiciones de hábitat, pero eso sólo llegaba a explicar hasta un 30% de la variabilidad espacial. La posición de los adultos de la misma especie también afectó a la distribución de las plántulas. En bastantes especies las plántulas evitan la cercanía de adultos de su misma especie, padres potenciales, aunque algunas especies aisladas mostraron el patrón contrario y aparecieron preferentemente en las mismas áreas que sus padres. La importancia de las condiciones de hábitat y posición de los adultos en la disposición de las plántulas varía de una zona a otra del bosque y además también varía según el estado de desarrollo de la masa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wide range of morphological variations in the “loxurina group” makes taxa identification difficult, and despite several reviews, serious taxonomical confusion remains. We make use of DNA data in conjunction with morphological appearance and available information on species distribution to delimit the boundaries of the “loxurina” group species previously established based on morphology. A fragment of 635 base pairs within the mtDNA gene cytochrome oxidase I (COI) was analysed for seven species of the “loxurina group”. Phylogenetic relationships among the included taxa were inferred using maximum parsimony and maximum likelihood methods. Penaincisalia sigsiga (Bálint et al), P. cillutincarae (Draudt), P. atymna (Hewitson) and P. loxurina (C. Felder & R. Felder) were easily delimited as the morphological, geographic and molecular data were congruent. Penaincisalia ludovica (Bálint & Wojtusiak) and P. loxurina astillero (Johnson) represent the same entity and constitute a sub-species of P. loxurina. However, incongruence among morphological, genetic, and geographic data is shown in P. chachapoya (Bálint & Wojtusiak) and P. tegulina (Bálint et al). Our results highlight that an integrative approach is needed to clarify the taxonomy of these neotropical taxa, but more genetic and geographical studies are still required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on the occurrence of species are widely used to inform the design of reserve networks. These data contain commission errors (when a species is mistakenly thought to be present) and omission errors (when a species is mistakenly thought to be absent), and the rates of the two types of error are inversely related. Point locality data can minimize commission errors, but those obtained from museum collections are generally sparse, suffer from substantial spatial bias and contain large omission errors. Geographic ranges generate large commission errors because they assume homogenous species distributions. Predicted distribution data make explicit inferences on species occurrence and their commission and omission errors depend on model structure, on the omission of variables that determine species distribution and on data resolution. Omission errors lead to identifying networks of areas for conservation action that are smaller than required and centred on known species occurrences, thus affecting the comprehensiveness, representativeness and efficiency of selected areas. Commission errors lead to selecting areas not relevant to conservation, thus affecting the representativeness and adequacy of reserve networks. Conservation plans should include an estimation of commission and omission errors in underlying species data and explicitly use this information to influence conservation planning outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We modelled the distributions of two toads (Bufo bufo and Epidalea calamita) in the Iberian Peninsula using the favourability function, which makes predictions directly comparable for different species and allows fuzzy logic operations to relate different models. The fuzzy intersection between individual models, representing favourability for the presence of both species simultaneously, was compared with another favourability model built on the presences shared by both species. The fuzzy union between individual models, representing favourability for the presence of any of the two species, was compared with another favourabilitymodel based on the presences of either or both of them. The fuzzy intersections between favourability for each species and the complementary of favourability for the other (corresponding to the logical operation “A and not B”) were compared with models of exclusive presence of one species versus the exclusive presence of the other. The results of modelling combined species data were highly similar to those of fuzzy logic operations between individual models, proving fuzzy logic and the favourability function valuable for comparative distribution modelling. We highlight several advantages of fuzzy logic over other forms of combining distribution models, including the possibility to combine multiple species models for management and conservation planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although on a local scale Iberian lynx distribution is determined by the availability of prey rabbits, recent modelling analyses have uncovered broad-scale disagreements between these two speciesdistribution trends. These analyses showed also that the lynx had become restricted to only a fraction of the rabbit’s genetic diversity, and that this could be jeopardising its survival in the face of environmental hazards and uncertainty. In the present paper, a follow-up was carried out through the building of lynx and rabbit distribution models based on the most recent Spanish mammal atlas. Environmental favourability values for lynx and rabbit were positively correlated within the lynx’s current distribution area, but they were negatively correlated within the total Spanish area where lynx used to occur in the 1980’s. Environmental favourability for rabbits was significantly higher where lynx maintains reproductive populations than where it recently disappeared, indicating that rabbit favourability plays an important role and can be a good predictor of lynx persistence. The lynx and rabbit models were extrapolated to predict favourable areas for both species in Spain as well as in Portugal, on the original scale of the distribution data (10x10 km) and on a 100 times finer spatial resolution (1x1 km). The lynx and rabbit models were also combined through fuzzy logic to forecast the potential for lynx occurrence incorporating information on favourable areas for its main prey. Several areas are proposed as favourable for lynx expansion or re-introduction,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transferring distribution models between different geographical areas may be problematic, as the performance of models outside their original scope is hard to predict. A modelling procedure is needed that gets the gist of the environmental descriptors of a distribution area, without either overfitting to the training data or overestimating the speciesdistribution potential.We tested the transferability power of the favourability function, a generalized linear model, on the distribution of the Iberian desman (Galemys pyrenaicus) in the Iberian territories of Portugal and Spain.We also tested the effects of two of the main potential constraints on model transferability: the analysed ranges of the predictor variables, and the completeness of the species distribution data. We modelled 10 km×10km presence/absence data from Portugal and Spain separately, extrapolated each model to the other country, and compared predictions with observations. The Spanish model, despite arguably containing more false absences, showed good predictive ability in Portugal. The Portuguese model, whose predictors ranged between only a subset of the values observed in Spain, overestimated desman distribution when transferred.We discuss possible reasons for this differential model behaviour, and highlight the importance of this kind of models for prediction and conservation applications

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ecological niche modelling combines species occurrence points with environmental raster layers in order to obtain models for describing the probabilistic distribution of species. The process to generate an ecological niche model is complex. It requires dealing with a large amount of data, use of different software packages for data conversion, for model generation and for different types of processing and analyses, among other functionalities. A software platform that integrates all requirements under a single and seamless interface would be very helpful for users. Furthermore, since biodiversity modelling is constantly evolving, new requirements are constantly being added in terms of functions, algorithms and data formats. This evolution must be accompanied by any software intended to be used in this area. In this scenario, a Service-Oriented Architecture (SOA) is an appropriate choice for designing such systems. According to SOA best practices and methodologies, the design of a reference business process must be performed prior to the architecture definition. The purpose is to understand the complexities of the process (business process in this context refers to the ecological niche modelling problem) and to design an architecture able to offer a comprehensive solution, called a reference architecture, that can be further detailed when implementing specific systems. This paper presents a reference business process for ecological niche modelling, as part of a major work focused on the definition of a reference architecture based on SOA concepts that will be used to evolve the openModeller software package for species modelling. The basic steps that are performed while developing a model are described, highlighting important aspects, based on the knowledge of modelling experts. In order to illustrate the steps defined for the process, an experiment was developed, modelling the distribution of Ouratea spectabilis (Mart.) Engl. (Ochnaceae) using openModeller. As a consequence of the knowledge gained with this work, many desirable improvements on the modelling software packages have been identified and are presented. Also, a discussion on the potential for large-scale experimentation in ecological niche modelling is provided, highlighting opportunities for research. The results obtained are very important for those involved in the development of modelling tools and systems, for requirement analysis and to provide insight on new features and trends for this category of systems. They can also be very helpful for beginners in modelling research, who can use the process and the experiment example as a guide to this complex activity. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Predicting the potential geographical distribution of a species is particularly important for pests with strong invasive abilities. Tetranychus evansi Baker & Pritchard, possibly native to South America, is a spider mite pest of solanaceous crops. This mite is considered an invasive species in Africa and Europe. A CLIMEX model was developed to predict its global distribution. The model results fitted the known records of T. evansi except for some records in dry locations. Dryness as well as excess moisture stresses play important roles in limiting the spread of the mite in the tropics. In North America and Eurasia its potential distribution appears to be essentially limited by cold stress. Detailed potential distribution maps are provided for T. evansi in the Mediterranean Basin and in Japan. These two regions correspond to climatic borders for the species. Mite establishment in these areas can be explained by their relatively mild winters. The Mediterranean region is also the main area where tomato is grown in open fields in Europe and where the pest represents a threat. According to the model, the whole Mediterranean region has the potential to be extensively colonized by the mite. Wide expansion of the mite to new areas in Africa is also predicted. Agricultural issues highlighted by the modelled distribution of the pest are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The southern Australian marine macroalgal flora has the highest levels of species richness and endemism of any regional macroalgal flora in the world. Analyses of species composition and distributions for the southern Australian flora have identified four different floristic elements, namely the southern Australian endemic element, the widely distributed temperate element, the tropical element and a cold water element. Within the southern Australian endemic element, four species distribution patterns are apparent, thought to largely result from the Jurassic to Oligocene fragmentation of East Gondwana, the subsequent migration of Tethyan ancestors from the west Australian coast and the later invasion of high latitude Pacific species. Climatic deterioration from the late Eocene to the present is thought responsible for the replacement of the previous tropical south coast flora by an endemic temperate flora which has subsequently diversified in response to fluctuating environmental conditions, abundant rocky substrata and substantial habitat heterogeneity. High levels of endemism are attributed to Australia's long isolation and maintained, as is the high species richness, by the lack of recent mass extinction events. The warm water Leeuwin Current has had profound influence in the region since the Eocene, flowing to disperse macroalgal species onto the south coast as well as ameliorating the local environment. It is now evident that the high species richness and endemism we now observe in the southern Australian marine macroalgal flora can be attributed to a complex interaction of biogeographical, ecological and phylogenetic processes over the last 160 million years.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The members of the Anopheles punctulatus group are major vectors of malaria and Bancroftian filariasis in the southwest Pacific region. The group is comprised of 12 cryptic species that require DNA-based tools for species identification. From 1984 to 1998 surveys were carried out in northern Australia, Papua New Guinea and on islands in the southwest Pacific to determine the distribution of the A. punctulatus group. The results of these surveys have now been completed and have generated distribution data from more than 1500 localities through this region. Within this region several climatic and geographical barriers were identified that restricted species distribution and gene flow between geographic populations. This information was further assessed in light of a molecular phylogeny derived from the ssrDNA (18S). Subsequently, hypotheses have been generated on the evolution and distribution of the group so that future field and laboratory studies may be approached more systematically. This study suggested that the ability for widespread dispersal was found to have appeared independently in species that show niche-specific habitat preference (Anopheles farauti s.s. and A. punctulatus) and conversely in species that showed diversity in their larval habitat (Anopheles farauti 2). Adaptation to the monsoonal climate of northern Australia and southwest Papua New Guinea was found to have appeared independently in A. farauti s.s., A. farauti 2 and Anopheles farauti 3. Shared or synapomorphic characters were identified as saltwater tolerance (A. farauti s.s. and Anopheles farauti 7) and elevational affinities above 1500 m (Anopheles farauti 5, Anopheles farauti 6 and A. farauti 2). (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O gênero Guerlinguetus, pertencente à família Sciuridae, possui sete espécies existentes no Brasil. Essas espécies têm sido tratadas como sinônimos de Sciurus aestuans, mas foram distinguidas em um gênero próprio com base nas revisões taxonômicas mais abrangentes disponíveis até recentemente. Apesar disso, pouco há na literatura sobre a distribuição das espécies desse gênero no Brasil e nenhuma pesquisa visando o conhecimento de sua distribuição futura havia sido realizada. A modelagem de distribuição potencial de espécies tem se tornado um componente importante dos planos de conservação e uma grande quantidade de técnicas têm sido desenvolvidas com esta finalidade. Ela pode ser uma ferramenta importante para determinar o grau de ameaça principalmente em espécies ou grupos com poucas informações disponíveis sobre sua distribuição. Com isso, o objetivo do presente trabalho foi verificar a influência das possíveis mudanças climáticas na distribuição das espécies de Guerlinguetus no Brasil, através da modelagem potencial das distribuições atual e futura dessas espécies. Para isso foram utilizados dados climáticos e topográficos e o cenário pessimista de emissão de CO2 (A2) para o ano 2070, do Modelo de Circulação Geral CSIRO, com base no quarto relatório do Painel Intergovernamental de Mudanças Climáticas. Os modelos gerados apresentaram perda significativa de áreas consideradas ambientalmente adequadas, do modelo de distribuição atual para o modelo de distribuição futura para as espécies de Guerlinguetus, com exceção de G. aestuans. Apesar da expansão da região potencial de distribuição de G. aestuans para o ano de 2070, a média dos valores de adequabilidade ambiental diminuiu em relação ao modelo de distribuição atual. A localização dessas espécies de hábito arborícola em áreas geograficamente espalhadas dentro da Amazônia, Cerrado e Mata Atlântica é preocupante, devido a grande perda de área original desses biomas, tornando possível a hipótese de ameaça à sobrevivência das espécies devido a mudanças ambientais futuras.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Jornadas "Ciência nos Açores – que futuro?", Ponta Delgada, 7-8 de Junho de 2013.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Copyright © 2014 Entomological Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Much attention has been paid to the effects of climate change on species' range reductions and extinctions. There is however surprisingly little information on how climate change driven threat may impact the tree of life and result in loss of phylogenetic diversity (PD). Some plant families and mammalian orders reveal nonrandom extinction patterns, but many other plant families do not. Do these discrepancies reflect different speciation histories and does climate induced extinction result in the same discrepancies among different groups? Answers to these questions require representative taxon sampling. Here, we combine phylogenetic analyses, species distribution modeling, and climate change projections on two of the largest plant families in the Cape Floristic Region (Proteaceae and Restionaceae), as well as the second most diverse mammalian order in Southern Africa (Chiroptera), and an herbivorous insect genus (Platypleura) in the family Cicadidae to answer this question. We model current and future species distributions to assess species threat levels over the next 70years, and then compare projected with random PD survival. Results for these animal and plant clades reveal congruence. PD losses are not significantly higher under predicted extinction than under random extinction simulations. So far the evidence suggests that focusing resources on climate threatened species alone may not result in disproportionate benefits for the preservation of evolutionary history.