942 resultados para SIP Proxy Relay PJSIP Outbound
Resumo:
Sediment samples from both Site 165-999/165-1000 (Atlantic) and Site 202-1241 (Pacific) were chosen at 1Ma intervals over the period 0.3-9.3Ma. Samples were washed and sieved <150µm. Splits of the sediment fraction were picked completely to obtain, where possible, at least 30 specimens each of planktic foraminifer species Globigerinoides sacculifer and Globorotalia tumida, on which outline analysis (Fourier) was performed. Sea surface and thermocline temperatures were reconstructed from palaeoenvironmental proxies (UK37' and Tex86H respectively).
Resumo:
Changes in the strength of Atlantic meridional overturning circulation (AMOC) are known to have profound impacts on global climate. Coupled modelling studies have suggested that, on annual to multi-decadal time scales, a slowdown of AMOC causes a deepening of the thermocline in the tropical Atlantic. However, this process has been poorly constrained by sedimentary geochemical records. Here, we reconstruct surface (UK'37 Index) and thermocline (TEX86H) water temperatures from the Guinea Plateau Margin (Eastern tropical Atlantic) over the last two glacial-interglacial cycles (~ 192 kyr). These paleotemperature records show that periods of reduced AMOC, as indicated by the d13 C benthic foraminiferal record from the same core, coincide with a reduction in the near-surface vertical temperature gradient, demonstrating for the first time that AMOC-induced tropical Atlantic thermocline adjustment exists on longer, millennial time scales. Modelling results support the interpretation of the geochemical records and show that thermocline adjustment is particularly pronounced in the eastern tropical Atlantic. Thus, variations in AMOC strength appear to be an important driver of the thermocline structure in the tropical Atlantic from annual to multi-millennial time scales.
Resumo:
The Session Initiation Protocol (SIP) is an application-layer control protocol standardized by the IETF for creating, modifying and terminating multimedia sessions. With the increasing use of SIP in large deployments, the current SIP design cannot handle overload effectively, which may cause SIP networks to suffer from congestion collapse under heavy offered load. This paper introduces a distributed end-to-end overload control (DEOC) mechanism, which is deployed at the edge servers of SIP networks and is easy to implement. By applying overload control closest to the source of traf?c, DEOC can keep high throughput for SIP networks even when the offered load exceeds the capacity of the network. Besides, it responds quickly to the sudden variations of the offered load and achieves good fairness. Theoretic analysis and extensive simulations verify that DEOC is effective in controlling overload of SIP networks.
Resumo:
The Session Initiation Protocol (SIP) has been adopted by the IETF as the control protocol for creating, modifying and terminating multimedia sessions. Overload occurs in SIP networks when SIP servers have insufficient resources to handle received messages. Under overload, SIP networks may suffer from congestion collapse due to current ineffective SIP overload control mechanisms. This paper introduces a probe-based end-to-end overload control (PEOC) mechanism, which is deployed at the edge servers of SIP networks and is easy to implement. By probing the SIP network with SIP messages, PEOC estimates the network load and controls the traffic admitted to the network according to the estimated load. Theoretic analysis and extensive simulations verify that PEOC can keep high throughput for SIP networks even when the offered load exceeds the capacity of the network. Besides, it can respond quickly to the sudden variations of the offered load and achieve good fairness.
Resumo:
Having reliable wireless communication in a network of mobile robots is an ongoing challenge, especially when the mobile robots are given tasks in hostile or harmful environments such as radiation environments in scientific facilities, tunnels with large metallic components and complicated geometries as found at CERN. In this paper, we propose a decentralised method for improving the wireless network throughput by optimizing the wireless relay robot position to receive the best wireless signal strength using implicit spatial diversity concepts and gradient-search algorithms. We experimentally demonstrate the effectiveness of the proposed solutions with a KUKA Youbot omni-directional mobile robot. The performance of the algorithms is compared under various scenarios in an underground scientific facility at CERN.
Resumo:
We demonstrate the existence of generalized synchronization in systems that act as mediators between two dynamical units that, in turn, show complete synchronization with each other. These are the so-called relay systems. Specifically, we analyze the Lyapunov spectrum of the full system to elucidate when complete and generalized synchronization appear. We show that once a critical coupling strength is achieved, complete synchronization emerges between the systems to be synchronized, and at the same point, generalized synchronization with the relay system also arises. Next, we use two nonlinear measures based on the distance between phase-space neighbors to quantify the generalized synchronization in discretized time series. Finally, we experimentally show the robustness of the phenomenon and of the theoretical tools here proposed to characterize it.