920 resultados para SIMULATED MASTICATION
Resumo:
The cathodic behaviour of oxides formed on titanium electrodes in physiological solutions at potentials between 3 and 5 V (vs. SCE) was studied by cyclic voltammetry. In case of anodic polarization at potentials higher than 3 V (vs. SCE), a cathodic peak at similar to 0.4 V (vs. SCE) appears in the cathodic scan, which could be due to the reduction of unstable peroxides. The results show that this peak depends on the anodic potential and the oxidation time. This behaviour supposedly is due to the formation of unstable titanium peroxides like TiO3 during anodization. Based on repetitive oxidation-reduction processes can be concluded that the created amount of TiO3 inside of the TiO2 surface layer seems to be constant. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The simulated annealing optimization technique has been successfully applied to a number of electrical engineering problems, including transmission system expansion planning. The method is general in the sense that it does not assume any particular property of the problem being solved, such as linearity or convexity. Moreover, it has the ability to provide solutions arbitrarily close to an optimum (i.e. it is asymptotically convergent) as the cooling process slows down. The drawback of the approach is the computational burden: finding optimal solutions may be extremely expensive in some cases. This paper presents a Parallel Simulated Annealing, PSA, algorithm for solving the long term transmission network expansion planning problem. A strategy that does not affect the basic convergence properties of the Sequential Simulated Annealing algorithm have been implementeded and tested. The paper investigates the conditions under which the parallel algorithm is most efficient. The parallel implementations have been tested on three example networks: a small 6-bus network, and two complex real-life networks. Excellent results are reported in the test section of the paper: in addition to reductions in computing times, the Parallel Simulated Annealing algorithm proposed in the paper has shown significant improvements in solution quality for the largest of the test networks.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We examined the effects of simulated folivory by caterpillars on photosynthetic parameters and nitrogen (N) resorption efficiency in Quercus pyrenaica saplings. We analyzed the differences between intact leaves in control plants, punched leaves in damaged plants, and intact leaves in damaged plants. We then established two levels of simulated folivory: low (approximate to 13% of the leaf area of one main branch removed per plant) and high (approximate to 26% of the leaf area of one main branch removed per plant) treatments. No differences were found in net assimilation rate and conductance between either leaf type or treatment during the most favourable period for photosynthesis. However, the N content was lower in punched than in intact leaves, and as a result PNUE was higher in damaged leaves from treated trees. In leaf-litter samples, N mass was significantly higher in punched than in intact leaves in treated plants, and LMA was significantly higher in damaged than in intact leaves of both the treated and control plants. Consequently, N resorption efficiency was around 15% lower in damaged leaves as compared with intact leaves from treated and control plants. Mechanical injury to leaves not only triggered no compensatory photosynthetic response to compensate a lower carbon uptake due to leaf area loss, but also affected the resorption process that characterizes leaf senescence.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We have compared the recently introduced generalized simulated annealing (GSA) with conventional simulated annealing (CSA). GSA was tested as a tool to obtain the ground-state geometry of molecules. We have used selected silicon clusters (Sin, n=4-7,10) as test cases. Total energies were calculated through tight-binding molecular dynamics. We have found that the replacement of Boltzmann statistics (CSA) by Tsallis's statistics (GSA) has the potential to speed up optimizations with no loss of accuracy. Next, we applied the GSA method to study the ground-state geometry of a 20-atom silicon cluster. We found an original geometry, apparently lower in energy than those previously described in the literature.
Resumo:
We introduce a new hybrid approach to determine the ground state geometry of molecular systems. Firstly, we compared the ability of genetic algorithm (GA) and simulated annealing (SA) to find the lowest energy geometry of silicon clusters with six and 10 atoms. This comparison showed that GA exhibits fast initial convergence, but its performance deteriorates as it approaches the desired global extreme. Interestingly, SA showed a complementary convergence pattern, in addition to high accuracy. Our new procedure combines selected features from GA and SA to achieve weak dependence on initial parameters, parallel search strategy, fast convergence and high accuracy. This hybrid algorithm outperforms GA and SA by one order of magnitude for small silicon clusters (Si6 and Si10). Next, we applied the hybrid method to study the geometry of a 20-atom silicon cluster. It was able to find an original geometry, apparently lower in energy than those previously described in literature. In principle, our procedure can be applied successfully to any molecular system. © 1998 Elsevier Science B.V.
Resumo:
One of the most important characteristics of intelligent activity is the ability to change behaviour according to many forms of feedback. Through learning an agent can interact with its environment to improve its performance over time. However, most of the techniques known that involves learning are time expensive, i.e., once the agent is supposed to learn over time by experimentation, the task has to be executed many times. Hence, high fidelity simulators can save a lot of time. In this context, this paper describes the framework designed to allow a team of real RoboNova-I humanoids robots to be simulated under USARSim environment. Details about the complete process of modeling and programming the robot are given, as well as the learning methodology proposed to improve robot's performance. Due to the use of a high fidelity model, the learning algorithms can be widely explored in simulation before adapted to real robots. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
Wireless sensor network (WSN) Is a technology that can be used to monitor and actuate on environments in a non-intrusive way. The main difference from WSN and traditional sensor networks is the low dependability of WSN nodes. In this way, WSN solutions are based on a huge number of cheap tiny nodes that can present faults in hardware, software and wireless communication. The deployment of hundreds of nodes can overcome the low dependability of individual nodes, however this strategy introduces a lot of challenges regarding network management, real-time requirements and self-optimization. In this paper we present a simulated annealing approach that self-optimize large scale WSN. Simulation results indicate that our approach can achieve self-optimization characteristics in a dynamic WSN. © 2012 IEEE.
Resumo:
Purpose: This study was performed to compare the inverted digital images and film-based images of dry pig mandibles to measure the periodontal bone defect depth. Materials and Methods: Forty 2-wall bone defects were made in the proximal region of the premolar in the dry pig mandibles. The digital and conventional radiographs were taken using a Schick sensor and Kodak F-speed intraoral film. Image manipulation (inversion) was performed using Adobe Photoshop 7.0 software. Four trained examiners made all of the radiographic measurements in millimeters a total of three times from the cementoenamel junction to the most apical extension of the bone loss with both types of images: inverted digital and film. The measurements were also made in dry mandibles using a periodontal probe and digital caliper. The Student's t-test was used to compare the depth measurements obtained from the two types of images and direct visual measurement in the dry mandibles. A significance level of 0.05 for a 95% confidence interval was used for each comparison. Results: There was a significant difference between depth measurements in the inverted digital images and direct visual measurements (p>|t|=0.0039), with means of 6.29 mm (IC95%:6.04-6.54) and 6.79 mm (IC95%:6.45-7.11), respectively. There was a non-significant difference between the film-based radiographs and direct visual measurements (p>|t|=0.4950), with means of 6.64mm (IC95%:6.40-6.89) and 6.79mm(IC95%:6.45-7.11), respectively. Conclusion: The periodontal bone defect measurements in the inverted digital images were inferior to film-based radiographs, underestimating the amount of bone loss. copy; 2012 by Korean Academy of Oral and Maxillofacial Radiology.
Resumo:
Objective: To evaluate the effects of simulated aging in bond strength and nanoleakage of class II restorations using three different restorative techniques. Materials and methods: Class II preparations (n = 12) were restored using: FS - composite resin Filtek Supreme Plus (3M/ESPE); RMGIC + FS - resin-modified glass ionomer cement Vitrebond Plus (3M/ESPE) + FS; and FFS + FS - flowable composite resin Filtek Supreme Plus Flowable (3M ESPE) + FS. The teeth were assigned into two groups: Control and Simulated Aging - Thermal/Mechanical cycling (3,000 cycles, 20-80 °C/500,000 cycles, 50 N). From each tooth, two slabs were assessed to microtensile bond strength test (μTBS) (MPa), and two slabs were prepared for nanoleakage assessment, calculated as penetration along the restoration margin considering the penetration length (%) and as the area of silver nitrate particle deposition (μm2). Data were analyzed by two-way analysis of variance (ANOVA) followed by Tukey's post hoc test (p < 0. 05). Results: FS presented the highest μTBS to dentin (22. 39 ± 7. 55 MPa) after simulated aging, while the presence of flowable resin significantly decreased μTBS (14. 53 ± 11. 65 MPa) when compared to no aging condition. Both control and aging groups of RMGIC + FS presented the highest values of silver nitrate penetration (89. 90 ± 16. 31 % and 97. 14 ± 5. 76 %) and deposition area (33. 05 ± 12. 49 and 28. 08 ± 9. 76 μm2). Nanoleakage was not affected by simulated aging. Conclusions: FS presented higher bond strength and lower nanoleakage and was not affected by simulated aging. Use of flowable resin compromised the bond strength after simulated aging. Clinical relevance: The use of an intermediate layer did not improve the dentin bond strength neither reduced nanoleakage at the gingival margins of class II restorations under simulated aging conditions. © 2012 Springer-Verlag.
Resumo:
Purpose: Sleep bruxism is common among the various oromotor alterations found in individuals with cerebral palsy (CP). Few studies have investigated the use of the mastication device denominated hyperbola (HB) and none was found describing the use of such a device for the treatment of bruxism in children with CP. The aim of the present study was to evaluate the effect of the HB on electromyographic (EMG) activity in the jaw-closing muscles and the reduction in sleep bruxism in a child with CP using surface EMG analysis before and after nine months of treatment. Methods: A seven-year-old boy with severe spastic CP and sleep bruxism was enrolled in this study. The HB was chosen as the treatment option for sleep bruxism in this case because the child did not accept an occlusal splint. The HB has a hyperbolic shape and is made of soft, non-toxic, odorless, tasteless silicone. There are five different sizes of HB manufactured based on the diversity of tooth sizes. This device produces proprioceptive excitation in the dentoalveolar nerve, spindles and Golgi tendon organs. HB has been employed for the treatment of temporomandibular disorder, abnormal oro-dental development, abnormal occlusion, xerostomy, halitosis and bruxism. HB therapy was performed for 5 min six times a day over a nine-week period. Surface EMG of the mandible at rest and during maximum contraction was performed on the masseter and temporalis muscles bilaterally to evaluate electromyographic activity before and after nine months of HB usage. Results: HB usage led to a visible tendency toward the reorganization of mastication dynamics, achieving a marked balance in electromyographic activity of the jaw-closing muscles and improving the child's quality of life. Conclusion: Based on the findings of the present study, this noninvasive therapy may be useful for individuals with cerebral palsy due to its positive effects and low cost, which allows its use in the public health realm. Further clinical studies with a larger sample size are needed to validate these results and allow the development of a new treatment protocol for patients with spastic cerebral palsy. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a method by simulated annealing for building roof contours identification from LiDAR-derived digital elevation model. Our method is based on the concept of first extracting aboveground objects and then identifying those objects that are building roof contours. First, to detect aboveground objects (buildings, trees, etc.), the digital elevation model is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. The solution of this function is a polygon set corresponding to building roof contours and is found by using a minimization technique, like the Simulated Annealing algorithm. Experiments carried out with laser scanning digital elevation model showed that the methodology works properly, as it provides roof contour information with approximately 90% shape accuracy and no verified false positives.