993 resultados para SILICA WAVE-GUIDES
Resumo:
The results of theoretical investigations of two-channel waveguide modulator based on Surface Wave (SW) propagation are presented. The structure studied consists of two n-type semiconductor waveguide channels separated from each other by a dielectric gap and coated by a metal. The SW propagates at the semiconductor-metal interface across an external magnetic field which is parallel to the interface. An external dc voltage is applied to the metal surface of one channel to provide a small phase shift between two propagating modes. In a coupled mode approximation, two possible regimes of operation of the structure, namely as a directional coupler and as an electro-optical modulator, are considered. Our results suggest new applications in millimeter and submillimeter wave solid-state electronics and integrated optics.
Resumo:
The structure of a microwave gas discharge produced and sustained by a surface wave (SW) propagating along a cylindrical metal antenna with a dielectric coating is studied. The SW that produces and sustains the microwave gas discharge propagates along an external magnetic field and has an eigenfrequency in the range between the electron cyclotron and electron plasma frequencies. The presence of a dielectric (vacuum) sheath region separating the antenna from the plasma is assumed. The spatial distributions of the produced plasma density, electromagnetic fields, energy flow density, phase velocity and reverse skin depth of the SW are obtained analytically and numerically.
Resumo:
Effective control of morphology and electrical connectivity of networks of single-walled carbon nanotubes (SWCNTs) by using rough, nanoporous silica supports of Fe catalyst nanoparticles in catalytic chemical vapor deposition is demonstrated experimentally. The very high quality of the nanotubes is evidenced by the G-to-D Raman peak ratios (>50) within the range of the highest known ratios. Transitions from separated nanotubes on smooth SiO2 surface to densely interconnected networks on the nanoporous SiO2 are accompanied by an almost two-order of magnitude increase of the nanotube density. These transitions herald the hardly detectable onset of the nanoscale connectivity and are confirmed by the microanalysis and electrical measurements. The achieved effective nanotube interconnection leads to the dramatic, almost three-orders of magnitude decrease of the SWCNT network resistivity compared to networks of similar density produced by wet chemistry-based assembly of preformed nanotubes. The growth model, supported by multiscale, multiphase modeling of SWCNT nucleation reveals multiple constructive roles of the porous catalyst support in facilitating the catalyst saturation and SWCNT nucleation, consistent with the observed higher density of longer nanotubes. The associated mechanisms are related to the unique surface conditions (roughness, wettability, and reduced catalyst coalescence) on the porous SiO2 and the increased carbon supply through the supporting porous structure. This approach is promising for the direct integration of SWCNT networks into Si-based nanodevice platforms and multiple applications ranging from nanoelectronics and energy conversion to bio- and environmental sensing.
Resumo:
A high-frequency-link (HFL) micro inverter with a front-end diode clamped multi-level inverter and a grid-connected half-wave cycloconverter is proposed. The diode clamped multi-level inverter with an auxiliary capacitor is used to generate high-frequency (HF) three level quasi square-wave output and it is fed into a series resonant tank to obtain high frequency continuous sinusoidal current. The obtained continuous sinusoidal current is modulated by using the grid-connected half-wave cycloconverter to obtain grid synchronized output current in phase with the grid voltage. The phase shift power modulation is used with auxiliary capacitor at the front-end multi-level inverter to have soft-switching. The phase shift between the HFL resonant current and half-wave cycloconverter input voltage is modulated to obtain grid synchronized output current.
Resumo:
While the half-angle which encloses a Kelvin ship wave pattern is commonly accepted to be 19.47 degrees, recent observations and calculations for sufficiently fast-moving ships suggest that the apparent wake angle decreases with ship speed. One explanation for this decrease in angle relies on the assumption that a ship cannot generate wavelengths much greater than its hull length. An alternative interpretation is that the wave pattern that is observed in practice is defined by the location of the highest peaks; for wakes created by sufficiently fast-moving objects, these highest peaks no longer lie on the outermost divergent waves, resulting in a smaller apparent angle. In this paper, we focus on the problems of free surface flow past a single submerged point source and past a submerged source doublet. In the linear version of these problems, we measure the apparent wake angle formed by the highest peaks, and observe the following three regimes: a small Froude number pattern, in which the divergent waves are not visible; standard wave patterns for which the maximum peaks occur on the outermost divergent waves; and a third regime in which the highest peaks form a V-shape with an angle much less than the Kelvin angle. For nonlinear flows, we demonstrate that nonlinearity has the effect of increasing the apparent wake angle so that some highly nonlinear solutions have apparent wake angles that are greater than Kelvin's angle. For large Froude numbers, the effect on apparent wake angle can be more dramatic, with the possibility of strong nonlinearity shifting the wave pattern from the third regime to the second. We expect our nonlinear results will translate to other more complicated flow configurations, such as flow due to a steadily moving closed body such as a submarine.
Resumo:
Part of the Next Wave MEMBRANE Project, Great Expectations draws attention to the parallels between our expectations of art and new technology to make the world a better place. The theme of the 2008 Next Wave Festival, ‘Closer Together’, refers to the way society is ― for the better or for the worse ― becoming increasingly connected by media and communication technologies. Sceptical of the acclaimed social achievements of new technologies, Boxcopy: Contemporary Art Space, a Brisbane-based artist-run initiative, explores the futility of human activities, including art production and consumption, with a collection of works created by young and emerging Brisbane artists. Works for this project include: Early machines such as the Commodore 64 were tape-based, and hence had their games distributed on ordinary cassettes (2009) by Tim Kerr & Extra Features (2008) by Tim Woodward; Spine (2008), Joseph Briekers; Whiteout (2008), Channon Goodwin; Explosive Revelations (2008), Daniel McKewen.
Resumo:
This study investigated the durability properties of concrete containing nano-silica at dosages of 0.3% and 0.9%, respectively. Due to the nano-filler effect and the pozzolanic reaction, the microstructure became more homogeneous and less porous, especially at the interfacial transition zone (ITZ), which led to reduced permeability. Tests on the durability properties verified the beneficial effects of nano-silica. The channels for harmful agents through the cement composites were partially filled and blocked. The pore size distribution also indicated that the large capillary pores were refined by the nano-silica, due to the combined contribution of the nano-filler effect and the pozzolanic reaction.
Resumo:
Silver nanoparticles with identical plasmonic properties but different surface functionalities are synthesized and tested as chemically selective surface-enhanced resonance Raman (SERR) amplifiers in a two-component protein solution. The surface plasmon resonances of the particles are tuned to 413 nm to match the molecular resonance of protein heme cofactors. Biocompatible functionalization of the nanoparticles with a thin film of chitosan yields selective SERR enhancement of the anionic protein cytochrome b5, whereas functionalization with SiO2 amplifies only the spectra of the cationic protein cytochrome c. As a result, subsequent addition of the two differently functionalized particles yields complementary information on the same mixed protein sample solution. Finally, the applicability of chitosan-coated Ag nanoparticles for protein separation was tested by in situ resonance Raman spectroscopy.
Resumo:
Silica coated Ag nanoparticles with defined surface plasmon resonances are used to selectively detect and analyze protein cofactors in solution and on interfaces via surface enhanced resonance Raman spectroscopy. The silica coating has a surprisingly small effect on optical amplification but minimizes unwanted interactions between the protein and the nanoparticle.
Resumo:
In this essay, I present a reflective and generative analysis of Business Process Management research, in which I analyze process management and the surrounding research program from the viewpoint of a theoretical paradigm embracing analytical, empirical, explanatory and design elements. I argue that this view not only reconciles different perceptions of BPM and different research streams, but that it also informs ways in which the BPM research program could develop into a much richer, more inclusive and overall more significant body of work than it has to date. I define three perspectives on a BPM research agenda, give several examples of exciting existing research, and offer key opportunities for further research that can (a) strengthen the core of BPM, (b) generate novel theory from BPM in relevant and topical big issue domains, and (c) explore more rigorously and comprehensively the protective belt of BPM assumptions that much of the present research abides by. The essay ends with some recommendations for continuing the debate about what constitutes BPM and some suggestions for how future research in this area might be carried out.
Resumo:
Summary form only given. Geometric simplicity, efficiency and polarization purity make slot antenna arrays ideal solutions for many radar, communications and navigation applications, especially when high power, light weight and limited scan volume are priorities. Resonant arrays of longitudinal slots have a slot spacing of one-half guide wavelength at the design frequency, so that the slots are located at the standing wave peaks. Planar arrays are implemented using a number of rectangular waveguides (branch line guides), arranged side-by-side, while waveguides main lines located behind and at right angles to the branch lines excite the radiating waveguides via centered-inclined coupling slots. Planar slotted waveguide arrays radiate broadside beams and all radiators are designed to be in phase.
Resumo:
Food for Thought embraces the notion that a revolution can start at the dinner table. Drawing inspiration from Judy Chicago’s seminal artwork ‘The Dinner Party’, LEVEL Artist Run Initiative hosted a series of dinner party events in order to create vibrant discussions concerning the role of women and feminism in the twenty-first century. The work consisted of a reading room, four dinner party events, and four public talks covering the topics: 'Women and the arts';'Generations: plurality and difference'; 'Women in the media'; and 'How can art contribute to political change for women in the 21st century?'