919 resultados para SELECTIVE D1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supercritical fluids (SCFs) offer a wide range of opportunities as media for chemical reactions and supercritical CO2, ScCO2, is becoming increasingly important as a benign replacement for more toxic solvents.1 High pressure reactions, however, are more capital intensive than conventional low pressure processes. Therefore, supercritical fluids will only gain widespread acceptance in those areas where the fluids give real chemical advantages as well as environmental benefits. This lecture gives a brief account of the use of flow reactors for continuous reactions in supercritical fluids, particularly those of interest for the manufacture of fine chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proposed in this paper that we can use frequency-modulated (FM) lasers to realize bond-selective chemical reactions or to raise the efficiency of molecular isotope separation. Examples are given for HF molecule and the C–H bond in some hydrocarbons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of reproductive and genetic technologies can increase the efficiency of selective breeding programs for aquaculture species. Four technologies are considered, namely: marker-assisted selection, DNA fingerprinting, in-vitro fertilization, and cryopreservation. Marker-assisted selection can result in greater genetic gain, particularly for traits difficult or expensive to measure, than conventional selection methods, but its application is currently limited by lack of high density linkage maps and by the high cost of genotyping. DNA fingerprinting is most useful for genetic tagging and parentage verification. Both in-vitro fertilization and cryopreservation techniques can increase the accuracy of selection while controlling accumulation of inbreeding in long-term selection programs. Currently, the cost associated with the utilization of reproductive and genetic techniques is possibly the most important factor limiting their use in genetic improvement programs for aquatic species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la presente tesis doctoral se ha estudiado la integración del proceso de producción de hidrógeno con su purificación mediante el empleo de membranas selectivas de hidrógeno. La producción de hidrógeno se realiza empleando catalizadores no convencionales de níquel soportado sobre magnesia y alúmina en un reactor catalítico. Se analiza la actividad de los catalizadores y la producción de hidrógeno mediante distintos procesos con metano como son la oxidación parcial catalítica (OPC), OPC húmeda y reformadoLa purificación de hidrógeno se realiza en un módulo provisto de una membrana selectiva de hidrógeno de PdCu depositado en un soporte poroso cerámico. Una vez optimizada su preparación mediante deposición no electrolítica se caracterizan. Para ello se determina su permeabilidad a distintas temperaturas y realizando ciclos térmicos en atmósferas inerte y de hidrógeno, que puede fragilizar el metal. Una vez preparados los catalizadores y las membranas se integran los dos sistemas y se determinan los parámetros de operación óptimos como la presión de la línea de alimentación y el caudal de gas de arrastre en el módulo de membrana. Ambos parámetros se optimizan para lograr la máxima recuperación de hidrógeno en el módulo de membrana. Por últimos se realizan ensayos completos de producción y purificación, que permiten observar el rendimiento del sistema y también el efecto que los compuestos de la mezcla compleja alimentada a las membranas tienen en su comportamiento. Para concluir la integración de procesos se realizan ensayos añadiendo azufre de forma que el sistema sea más similar al proceso real. Esto permite también analizar el efecto del azufre tanto en los catalizadores como en las membranas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the mechanism of selective metallization on glass surfaces with the assistance of femtosecond laser irradiation followed by electroless plating. Irradiation of femtosecond laser makes it possible to selectively deposit copper microstructures in the irradiated area on glass surfaces coated with silver nitrate films. The energy-dispersive X-ray (EDX) analyses reveal that silver atoms are produced on the surface of grooves formed by laser ablation, which serve as catalysis seeds for subsequent electroless copper plating. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The particulate methane monooxygenase (pMMO) catalyzes the oxidation of methane to methanol under ambient temperatures and pressures. Other small alkanes and alkenes are also substrates of this enzyme. We measured and compared the initial rate constants of oxidation of small alkanes (C1 to C5) catalyzed by pMMO. Both primary and secondary alcohols were formed from oxidation of n-butane and n-pentane. The alcohols produced from alkane oxidation can be further oxidized, probably by pMMO, to aldehydes and ketones. The apparent regioselectivity for n-butane and n-pentane is 100% 2-alcohols because the formation of primary alcohols is slower than further oxidation of these alcohols. The hydroxylation at the secondary carbons is highly stereoselective: (R)-alcohols are preferentially formed. The enantiomeric excess increases slightly with decreasing reaction temperature. The steric course of hydroxylation on primary carbons was also studied by using isotopically substituted ethane: (S)- or (R)-CH_3-CHDT, and (S)- or (R)-CD_3- CHDT and the reactions were found to proceed with 100% retention of configuration. A primary isotopic effect of k_H/k_D=5.0 was observed in these experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that a Raman sensor integrated with a micro-heater, a microfluidic chamber, and a surface-enhanced Raman scattering (SERS) substrate can be fabricated in a glass chip by femtosecond laser micromachining. The micro-heater and the SERS substrate are fabricated by selective metallization on the glass surface using a femtosecond laser oscillator, whereas the microfluidic chamber embedded in the glass sample is fabricated by femtosecond laser ablation using a femtosecond laser amplifier. We believed that this new strategy for fabricating multifunctional integrated microchips has great potential application for lab-on-a-chips. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smartphones and other powerful sensor-equipped consumer devices make it possible to sense the physical world at an unprecedented scale. Nearly 2 million Android and iOS devices are activated every day, each carrying numerous sensors and a high-speed internet connection. Whereas traditional sensor networks have typically deployed a fixed number of devices to sense a particular phenomena, community networks can grow as additional participants choose to install apps and join the network. In principle, this allows networks of thousands or millions of sensors to be created quickly and at low cost. However, making reliable inferences about the world using so many community sensors involves several challenges, including scalability, data quality, mobility, and user privacy.

This thesis focuses on how learning at both the sensor- and network-level can provide scalable techniques for data collection and event detection. First, this thesis considers the abstract problem of distributed algorithms for data collection, and proposes a distributed, online approach to selecting which set of sensors should be queried. In addition to providing theoretical guarantees for submodular objective functions, the approach is also compatible with local rules or heuristics for detecting and transmitting potentially valuable observations. Next, the thesis presents a decentralized algorithm for spatial event detection, and describes its use detecting strong earthquakes within the Caltech Community Seismic Network. Despite the fact that strong earthquakes are rare and complex events, and that community sensors can be very noisy, our decentralized anomaly detection approach obtains theoretical guarantees for event detection performance while simultaneously limiting the rate of false alarms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Publications about olefin metathesis will generally discuss how the discovery and development of well-defined catalysts to carry out this unique transformation have revolutionized many fields, from natural product and materials chemistry, to green chemistry and biology. However, until recently, an entire manifestation of this methodology had been inaccessible. Except for a few select examples, metathesis catalysts favor the thermodynamic trans- or E-olefin products in cross metathesis (CM), macrocyclic ring closing metathesis (mRCM), ring opening metathesis polymerization (ROMP), and many other types of reactions. Judicious choice of substrates had allowed for the direct synthesis of cis- or Z-olefins or species that could be converted upon further reaction, however the catalyst controlled synthesis of Z-olefins was not possible until very recently.

Research into the structure and stability of metallacyclobutane intermediates has led to the proposal of models to impart Z-selectivity in metathesis reactions. Having the ability to influence the orientation of metallacyclobutane substituents to cause productive formation of Z- double bonds using steric and electronic effects was highly desired. The first successful realization of this concept was by Schrock and Hoveyda et al. who synthesized monoaryloxide pyrolidine (MAP) complexes of tungsten and molybdenum that promoted Z-selective CM. The Z-selectivity of these catalysts was attributed to the difference in the size of the two axial ligands. This size difference influences the orientation of the substituents on the forming/incipient metallacyclobutane intermediate to a cis-geometry and leads to productive formation of Z-olefins. These catalysts have shown great utility in the synthesis of complicated natural product precursors and stereoregular polymers. More recently, ruthenium catalysts capable of promoting Z-selective metathesis have been reported by our group and others. This thesis will discuss the development of ruthenium-based NHC chelated Z-selective catalysts, studies probing their unique metathesis mechanism, and synthetic applications that have been investigated thus far.

Chapter 1 will focus on studies into the stability of NHC chelated complexes and the synthesis of new and improved stable chelating architectures. Chapter 2 will discuss applications of the highly active and Z-selective developed in Chapter 1, including the formation of lepidopteran female sex pheromones using olefin cross metathesis and highly Z- and highly E-macrocycles using macrocyclic ring closing metathesis and Z-selective ethenolysis. Chapter 3 will explore studies into the unique mechanism of olefin metathesis reactions catalyzed by these NHC chelated, highly Z-selective catalysts, explaining observed trends by investigating the stability of relevant, substituted metallacyclobutane intermediates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report selective metallization on surfaces of insulators ( glass slides and lithium niobate crystal) based on femtosecond laser modification combined with electroless plating. The process is mainly composed of four steps: (1) formation of silver nitrate thin films on the surfaces of glass or crystal substrates; (2) generation of silver particles in the irradiated area by femtosecond laser direct writing; (3) removal of unirradiated silver nitrate films; and (4) selective electroless plating in the modified area. We discuss the mechanism of selective metallization on the insulators. Moreover, we investigate the electrical and adhesive properties of the copper microstructures patterned on the insulator surfaces, showing great potential of integrating electrical functions into lab-on-a-chip devices. (C) 2007 Optical Society of America.