985 resultados para Root growth


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Botânica) - IBB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Agricultura) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Brazil, phosphorus availability is one factor that that more limit yield of upland rice under rainfed system. Then, better understanding of cultivars development at phosphorus soil fertilization is very important in the production systems making this more sustainable. The objective was to evaluate the influence of phosphorus doses applied to the soil over the root length, root and shoot dry matter, concentration and content of macronutrient and zinc in shoot and root as well as the efficiency of nutrient uptake per meter root of upland cultivars of intermediate and modern groups. The experiment was carried out in greenhouse conditions in a completely randomized design in factorial scheme 4 x 4. Treatments were four levels of P fertilization applied at the soil (0, 50, 100 and 200 mg dm(-3) of P) and four upland rice cultivars (Maravilha - modern group, IAC-201, IAC-202 and Carajas - intermediate group). There is increase in phosphorus availability in the soil with increasing levels of P fertilization. Under low phosphorus availability, cultivars of the intermediate group have better shoots and root system development in relation to the modern cultivar group. Level of phosphorus affected nutrients contents in shoots and root system of upland rice cultivars. The increasing phosphorus fertilization increased uptake of nutrients per meter of root; and although under higher phosphorus availability there was a greater root growth, in low phosphorus availability root growth was greater at the expense of shoot growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pyrostegia venusta (Ker-Gawl.) Miers (Bignoniaceae) is a species with a wide distribution in nearly all of Southern and Southeastern Brazil, has long been used in folk medicine and is considered an invasive plant. The phytotoxic potential of a hydroalcoholic extract of the flowers of P. venusta was evaluated by the germination (pre and post-emergence) and the phytotoxicity bioassays (mitotic index) on the test plant Lactuca sativa (Asteraceae) (lettuce). A phytochemical screening was performed to identify the components of the floral extract. Different concentrations of the extract caused changes in the germination parameters, the root length and the mitotic index. The phytochemical screening indicated the presence of substances such as terpenes, sterols, flavonoids, tannins and saponins, which are compounds that may be associated directly with the results of cytotoxicity and phytotoxicity observed. P. venusta has allelochemical components capable of impairing the germination and root growth of lettuce.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle in Eucalyptus grandis plantations managed in short rotation. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1-3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5-, and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years) and 4 soil profiles down to 1.5-3.0 m deep. The root intersects were counted on 224 m(2) of trench walls in 15 pits. Monitoring the soil water content showed that, after clear cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the rotation. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. A considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cotton is one of the most sensitive crops to soil compaction, but there may be genetic variability for this trait. The objective of this study was to evaluate cotton cultivars sensitivity to soil compaction. Soil columns were built with three pvc rings with internal diameter of 10 cm and filled with an alfisol. The heights of the top and bottom rings were 15 cm, and the intermediate ring, in which the soil was compacted, was 3.5 cm high. The levels of compression used in the subsurface were characterized by penetration resistances of 0.41, 0.93, 1.41 and 1.92 MPa. The cultivars 701 FMT, FMT 705, FMT 707, FMX 951 LL and FMX 966 LL were grown up to 23 days after plant emergence, when the dry matter of shoots and roots, root length density and root diameter were determined. The cotton cultivars have variability in their sensitivity to resistance to penetration. The cultivar 707 FMT is more sensitive to soil compaction, while the FMT 701 is more tolerant. Penetration resistance of around 0.92 to 1.06 MPa reduce 50% cotton root growth, but resistance to penetration of 1.92 MPa did not totally prevent growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of biostimulants can alter plant growth and development, but the action of they may be varied according to the stage of development of the plant. The aim was to evaluate the effects of forms and times of a biostimulant (cytokinin, indolebutyric acid, and gibberellic acid) application on nodulation, some biochemical aspects, growth and yield of common bean cultivar Perola. The treatments were: Control (without application); TS - 250 mL ha(-1) seed treatment; V-4 - 250 mL ha(-1) foliar spray in V-4 stage; R-5 - 250 mL ha(-1) foliar spray in R-5 stage; TS+V-4 - 250 mL ha(-1) in TS + 250 mL ha(-1) in V-4; TS+R-5 - 250 mL ha(-1) in TS + 250 mL ha(-1) in R-5; V-4+R-5 - 250 mL ha(-1) in V-4 + 250 mL ha(-1) in R-5, and TS+V-4+R-5 - 250 mL ha(-1) in TS + 250 mL ha(-1) in V-4 + 250 mL ha(-1) in R-5. The foliar biostimulant application in the vegetative (V-4) or early reproductive phase (R-5) increases nodulation, root growth, content of soluble sugars, content of total amino acid and nitrate reductase activity, however, does not interfere with shoot growth and grain yield of common bean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effects of silicon application adjusted with nitrogen fertilization via top-dressing on grain productivity, the silicon contents of the soil, in the plant tissue and nitrogen contents in dry and irrigated conditions. The experimental outlining was from designed blocks with subdivided parcels and four repetitions. The treatments consisted of culture system (dry and irrigated) and the under parcels by the combination of silicon (0 and 100 kg ha(-1)), in magnesium and calcium silicate form (with 23% of SiO2), and four doses of N (urea) via top-dressing (0, 30, 60 and 90 kg ha(-1)). Silicon application at sowing furrow was a viable technique because it provided significant increase in the content of this element in the root growth of rice. The application of silicon in the sowing furrow did not change the content of the element nor the nitrogen nutrition in rice plants. The nitrogen application reduced the silicon content and increased nitrogen nutrition in rice plants. Silicon application at sowing furrow provided no increase in rice grain yield. When there was no water limitation to nitrogen fertilization enhanced linearly on rice grain yield, whereas under water stress the effect of nitrogen fertilization was limited.