964 resultados para Rockwell Hardness Tester


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of problem. Acrylic resin denture teeth soften upon immersion in water, and the heating generated during microwave sterilization may enhance this process.Purpose. Six brands of acrylic resin denture teeth were investigated with respect to the effect of microwave sterilization and water immersion on Vickers hardness (VHN).Material and Methods. The acrylic resin denture teeth (Dentron [D], Vipi Dent Plus [V], Postaris [P], Biolux [B], Trilux [T], and Artiplus [A]) were embedded in heat-polymerized acrylic resin within polyvinylchloride tubes. For each brand, the occlusal surfaces of 32 identical acrylic resin denture posterior teeth were ground flat with 1500-grit silicon carbide paper and polished on a wet polishing wheel with a slurry of tin oxide. Hardness tests were performed after polishing (control group, C) after polishing followed by 2 cycles of microwave sterilization at 650 W for 6 minutes (MwS group), after polishing followed by 90-day immersion in water (90-day Wim group), and after polishing followed by 90-day storage in water and 2 cycles of microwave sterilization (90-day Wim + MwS group). For each specimen, 8 hardness measurements were made and the mean was calculated. Data were analyzed with a 2-way analysis of variance followed by the Bonferroni procedure to determine any significance between pairs of mean values (alpha=.01).Results: Mircrowave sterilization of specimens significantly decreased (P <.001) the hardness of the acrylic resin denture tooth specimens P (17.8 to 16.6 VHN, V (18.3 to 15.8 VHN), T (17.4 to 15.3 VHN), B (16.8 to 15.7 VHN), and A (17.3 to 15.7 VHN). For all acrylic resin denture teeth, no significant differences in hardness were found between the groups Mws, 90-day Wim, and 90-day Wim + MwS, with the exception of the 90-day Wim + MwS tooth A specimens (14.4 VHN), which demonstrated significant lower mean values (P <.001) than the 90-day Wim (15.8 VHN) and MwS (15.7 VHN) specimens.Conclusions. For specimens immersed in water for 90 days, 2 cycles of microwave sterilization had no effect on the hardness of most of the acrylic resin denture teeth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the cementation of metallic restorations, the polymerization of dual-curing resin cements depends exclusively on chemical activation. This study evaluated the influence of chemical activation compared with dual-curing (chemical and light activation), on the hardness of four dual-curing resin cements. In a darkened environment, equal weight proportions of base and catalyst pastes of the cements Scotchbond Resin Cement, Variolink II, Enforce and Panavia F were mixed and inserted into moulds with cavities of 4 mm in diameter and 2 mm in height. Subsequently, the cements were: 1) not exposed to light (chemical activation = self-cured groups) or 2) photoactivated (dual-curing = dual-cured groups). The Vickers hardness number was measured at 1 hour, 24 hours and 7 days after the start time of cements' spatulation. For all the cements, the hardness values of self-cured groups were lower than those of the respective dual-cured groups at 1 hour and 24 hours. At 7 days, this behavior continued for Variolink II and Panavia F, whilst for Scotchbond Resin Cement and Enforce there was no statistical difference between the two activation modes. All cements showed a significant increase in their hardness values from 1 hour to 7 days for both activation modes. Of the self-cured groups, Scotchbond Resin Cement and Variolink II presented the highest and the lowest hardness values, respectively, for all three times tested. Within the limitations of this study, up to the time of 24 h, chemical activation alone was unable to promote similar hardness as to that obtained with dual-curing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Potential effects on hardness and roughness of a necessary and effective disinfecting regimen (1% sodium hypocholorite and 4% chlorhexidine) were investigated for two hard chairside reline resins versus a heat-polymerizing denture base acrylic resin. Materials and Methods: Two standard hard chairside reliners (Kooliner and Duraliner II), one heat-treated chairside reliner (Duraliner II +10 minutes in water at 55°C), and one standard denture base material (Lucitone 550) were exposed to two disinfecting solutions (1% sodium hypochlorite; 4% chlorhexidine gluconate), and tested for two surface properties [Vickers hardness number (VHN, kg/mm2); Roughness (Ra, μm)] for different times and conditions (1 hour after production, after 48 hours at 37 ± 2°C in water, after two disinfection cycles, after 7 days in disinfection solutions, after 7 days in water only). For each experimental condition, eight specimens were made from each material. Data were analyzed by analysis of variance followed by Tukey's test, and Student's t-test (p= 0.05). Results: For Kooliner (from 6.2 ± 0.3 to 6.5 ± 0.5 VHN) and Lucitone 550 (from 16.5 ± 0.4 to 18.4 ± 1.7 VHN), no significant changes in hardness were observed either after the disinfection or after 7 days of immersion, regardless of the disinfectant solution used. For Duraliner II (from 4.0 ± 0.1 to 4.2 ± 0.1 VHN), with and without heat treatment, a small but significant increase in hardness was observed for the specimens immersed in the disinfectant solutions for 7 days (from 4.3 ± 0.2 to 4.8 ± 0.5 VHN). All materials showed no significant change in roughness (Kooliner: from 0.13 ± 0.05 to 0.48 ± 0.24 μm; Duraliner II, with and without heat treatment: from 0.15 ± 0.04 to 0.29 ± 0.07 μm; Lucitone 550: from 0.44 ± 0.19 to 0.49 ± 0.15 μm) after disinfection and after storage in water for 7 days. Conclusions: The disinfectant solutions, 1% sodium hypochlorite and 4% chlorhexidine gluconate, caused no apparent damage on hardness and roughness of the materials evaluated. Copyright © 2006 by The American College of Prosthodontists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti-6Al-4V samples have been treated by PHI processing at different temperatures (400-800°C), treatment time (30-150 min) and plasma potential (100 and 420 V). Hardness measurements results showed an enhancement of the hardness for all implanted samples. XRD results detected the Ti 2N phase and the best corrosion resistance was found for the samples processed at higher temperature and lower PIII time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of heat treatments on the Vickers hardness of commercially pure titanium and Ti-6Al-4V cast alloys. Six-millimeter-diameter cylindrical specimens were cast in a Rematitan System. Commercially pure titanium and Ti-6Al-4V alloy specimens were randomly assigned to 3 groups (n=10) that received the following heat treatments: control (no heat treatment); treatment 1 (T1): heating at 750°C for 2 h; and treatment 2 (T2): annealing at 955°C for 1 h and aging at 620°C for 2 h. After heat treatments, the specimens were embedded in acrylic resin and their surface was ground and polished and hardness was measured. Vickers hardness means (VHN) and standard deviations were analyzed statistically by Kruskal-Wallis test at 5% significance level. For commercially pure titanium, Vickers hardness means of group T2 (259.90 VHN) was significantly higher than those of the other groups (control - 200.26 VHN and T1 - 202.23 VHN), which presented similar hardness means to each other (p>0.05). For Ti-6Al-4V alloy, statistically significant differences were observed among the three groups: T2 (369.08 VHN), T1 (351.94 VHN) and control (340.51 VHN) (p<0.05). The results demonstrated different hardness of CP Ti and Ti-6Al-4V when different heat treatments were used. For CP Ti, VHN means of T2 group was remarkably higher than those of control and T1 group, which showed similar VHN means to each other. For Ti-6Al-4V alloy, however, VHN means recorded for each group may be presented as follows: T2>T1>control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the effects of disinfection treatments with chemical solutions (2% glutaraldehyde, 5% sodium hypochlorite, and 5% chlorhexidine) and microwave energy on the hardness of four long-term soft denture liners. Materials and Methods: Forty rectangular specimens of four soft lining materials (Molloplast-B, Ufi Gel P, Eversoft, and Mucopren soft) were made for each material. Ten samples of each material were immersed in different disinfectant solutions for 10 minutes or placed in a microwave oven for 3 minutes at 500 W. The hardness values were obtained with a Shore A durometer, before the first disinfection cycle (control), and also after two cycles of disinfection. Data were submitted to analysis of variance and Tukey's test (p < 0.01). Results: The highest value of hardness was obtained for Molloplast-B, independent of the disinfection technique. Mucopren soft demonstrated intermediate values and Ufi Gel P and Eversoft the lowest values of Shore A hardness. For Molloplast-B, the disinfection using glutaraldehyde demonstrated the highest value of hardness. The number of disinfections had no effect on the hardness values for all the materials studied and disinfection techniques. Conclusions: The application of two disinfection cycles did not change the Shore A hardness values for all the materials. The glutaraldehyde solution demonstrated the highest values of Shore A hardness for the Molloplast-B, Mucopren soft, and Ufi Gel P materials, while Eversoft did not present any differences in hardness when submitted to different disinfection treatments. Copyright © 2007 by The American College of Prosthodontists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An 8051-based microcontroller tester has been designed to reduce troubleshooting time of the Electro-Hydraulic Actuators (EHA) installed in fly-by-wire aircrafts. The tester algorithm first evaluates EHA pressure and position sensor signals to emit either a pass or fail message. The evaluation is based on predefined ranges of EHA pressure and position signals. Next, the instrument tests the EHA response capability - a way of dynamic response evaluation, again issuing a suitable response. The instrument proved to be reliable after being successfully evaluated in laboratory and in a real model test airplane. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of water-bath and microwave post-polymerization treatments on the flexural strength and Vickers hardness of four autopolymerizing reline resins (Duraliner II-D, Kooliner-K, Tokuso Rebase Fast-TR and Ufi Gel Hard C-UGH) and one heat-polymerized acrylic resin (Lucitone 550-L), processed using two polymerization cycles (short cycle - 90 minutes at 73°C and 100°C for 30 minutes; and long cycle - 9 hours at 71°C). For each material, thirty specimens (64 x 10 x 3.3 mm) were made and divided into 3 groups (n=10). Specimens were tested after: processing (control group); water-bath at 55°C for 10 minutes (reline materials) or 60 minutes (L); and microwave irradiation. Flexural strength tests were performed at a crosshead speed of 5 mm/min using a three-point bending device with a span of 50 mm. The flexural strengths values were calculated in MPa. One fragment of each specimen was submitted to Vickers hardness test. Data were analyzed by 2-way ANOVA followed by Tukey's HSD test (α=0.05). L microwaved specimens (short cycle) exhibited significantly higher flexural strength means than its respective control group (p<0.05). Water-bath promoted a significant increase (p<0.05) in flexural strength of K and L (long cycle). The hardness of the tested materials was not influenced by the post-polymerization treatments. Post-polymerization treatments could be used to improve the flexural strength of some materials tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the surface microhardness and fluoride release of 5 restorative materials - Ketac-Fil Plus, Vitremer, Fuji II LC, Freedom and Fluorofil - in two storage media: distilled/deionized water and a pH-cycling (pH 4.6). Twelve specimens of each material, were fabricated and the initial surface microhardness (ISM) was determined in a Shimadzu HMV-2000 microhardness tester (static load Knoop). The specimens were submitted to 6- or 18-h cycles in the tested media. The solutions were refreshed at the end of each cycle. All solutions were stored for further analysis. After 15-day storage, the final surface microhardness (FSM) and fluoride release were measured. Fluoride dose was measured with a fluoride-specific electrode (Orion 9609-BN) and digital ion analyzer (Orion 720 A). The variables ISM, FSM and fluoride release were analyzed statistically by analysis of variance and Tukey's test (p<0.05). There was significant difference in FSM between the storage media for Vitremer (pH 4.6 = 40.2 ± 1.5; water = 42.6 ± 1.4), Ketac-Fil Plus (pH 4.6 = 73.4 ± 2.7; water = 58.2 ± 1.3) and Fluorofil (pH 4.6 = 44.3 ± 1.8; water = 38.4 ± 1.0). Ketac-Fil Plus (9.9 ± 18.0) and Fluorofil (4.4 ± 1.3) presented higher fluoride release in water, whereas Vitremer (7.4 ± 7.1), Fuji II LC (5.7 ± 4.7) and Freedom (2.1 ± 1.7) had higher fluoride release at pH 4.6. Microhardness and fluoride release of the tested restorative materials varied according to the storage medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cross-sectional microhardness (CSMH) test was carried out in human dental enamel exposed to a demineralizing solution in order to evaluate two different times of indentation in sound tissue and artificially induced caries. Twenty caries-free extracted human molars had one of their smooth surfaces sectioned and the enamel surface was isolated with nail polish except for an area of 6 mm2. These specimens were submitted to artificially induced enamel caries on a lactate buffer containing 0.1 ppm fluoride (F) during 28 days. All specimens were bisected to create groups A and B in which CSMH test was performed employing a Knoop indenter with a 25g load for 5 or 10 s, respectively. Student's paired t-test (p<0.05) was used to determine statistically significant differences between group A and B in 7 depths. There were no significant differences between any of the analyzed depths. Since the present experiment showed no significant difference when comparing indentations made with a 25 g load during either 5 or 10 s in different depths, this method can be used with either one of the time intervals tested without compromising a CSMH test on artificially demineralized human enamel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the hardness of a dental composite resin submitted to temperature changes before photo-activation with two light-curing unite (LCUs). Five samples (4 mm in diameter and 2 mm in thickness) for each group were made with pre-cure temperatures of 37, 54, and 60°C. The samples were photo-activated with a conventional quartz-tungsten-halogen (QTH) and blue LED LCUs during 40 s. The hardness Vickers test (VHN) was performed on the top and bottom surfaces of the samples. According to the interaction between light-curing unit and different pre-heating temperatures of composite resin, only the light-curing unit provided influences on the mean values of initial Vickers hardness. The light-curing unit based on blue LED showed hardness mean values more homogeneous between the top and bottom surfaces. The hardness mean values were not statistically significant difference for the pre-cure temperature used. According to these results, the pre-heating of the composite resin provide no influence on Vickers hardness mean values, however the blue LED showed a cure more homogeneous than QTH LCU. © 2009 Pleiades Publishing, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Soft liners have been developed to offer comfort to denture wearers. However, this comfort is compromised when there is a change in the properties of the material, causing colour change, solubility, absorption and hardening. These characteristics can compromise the longevity of soft liners. AIM: The aim of this in vitro study was to investigate the effect of ageing on both the hardness and colour change of two soft liners following accelerated ageing. METHODS: Two denture liners, one resin based (Trusoft, Bosworth, Illinois, USA) and one silicone based (Ufi Gel P, Voco GMBH, Cuxhaven, Germany), were tested in this study for both hardness (using the Shore A scale) and colour change (using the CIE L*a*b* colour scale), initially and after 1008 hours (6 weeks) of accelerated ageing. Statistical analysis was performed using the unpaired t-test with the Welch correction. RESULTS: These indicated that both materials increased in hardness and underwent colour change after accelerated ageing. The initial hardness of Trusoft was far lower than that of Ufi Gel P (18.2 Shore A units vs 34.8 Shore A units). However, for Trusoft the changes for both hardness (from 18.2 to 52.1 Shore A units) and colour change (16.85 on the CIE L*a*b* colour scale) were greater than those for Ufi Gel P, for which hardness changed from 34.8 to 36.5 Shore A units and the colour change was 5.19 on the CIE L*a*b* colour scale. CONCLUSIONS: Ufi Gel P underwent less hardness and colour change after accelerated ageing than Trusoft. On the other hand, the use of Trusoft may be preferable in cases where initial softness is a major consideration, such as when relining an immediate denture after implant surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the Shore A hardness and color stability of two soft lining materials after thermocycling and when chemical polishing was used or omitted. Two acrylic-based soft lining materials were tested: Coe-Soft and Soft Confort, 14 specimens were made for each material. They were distributed in four groups according to the treatment performed. The specimens were thermocycled (1000 cycles) and half of the group submitted to chemical polishing (methyl methacrylate). Shore A hardness was determined and color stability was calculated by means of Commission International de l'Eclairage Lab uniform color scale using a spectrophotometer, the measurements were made immediately after deflasked, chemical polishing and thermocycling. Analysis of variance (ANOVA) and Tukey's tests were performed at p < 0.01. Color changes (deltaE) were observed after thermocycling in both soft lining materials: Soft Confort (10.60) showed significantly higher values than Coe-Soft (4.57). Coe-Soft (26.42) showed higher Shore A hardness values than Soft Confort (19.42). Chemical polishing did not influence in the color stability of both materials; however, influenced in the hardness values of Coe-Soft.