978 resultados para Rna-binding
Resumo:
The signal transduction and activation of RNA (STAR) family of RNA-binding proteins, whose members are evolutionarily conserved from yeast to humans, are important for a number of developmental decisions. For example, in the mouse, quaking proteins (QKI-5, QKI-6, and QKI-7) are essential for embryogenesis and myelination , whereas a closely related protein in Caenorhabditis elegans, germline defective-1 (GLD-1), is necessary for germ-line development. Recently, GLD-1 was found to be a translational repressor that acts through regulatory elements, called TGEs (for tra-2 and GLI elements), present in the 3′ untranslated region of the sex-determining gene tra-2. This gene promotes female development, and repression of tra-2 translation by TGEs is necessary for the male cell fates. The finding that GLD-1 inhibits tra-2 translation raises the possibility that other STAR family members act by a similar mechanism to control gene activity. Here we demonstrate, both in vitro and in vivo, that QKI-6 functions in the same manner as GLD-1 and can specifically bind to TGEs to repress translation of reporter constructs containing TGEs. In addition, expression of QKI-6 in C. elegans wild-type hermaphrodites or in hermaphrodites that are partially masculinized by a loss-of-function mutation in the sex-determining gene tra-3 results in masculinization of somatic tissues, consistent with QKI-6 repressing the activity of tra-2. These results strongly suggest that QKI-6 may control gene activity by operating through TGEs to regulate translation. In addition, our data support the hypothesis that other STAR family members may also be TGE-dependent translational regulators.
Resumo:
Iron regulatory proteins (IRPs) are cytoplasmic RNA binding proteins that are central components of a sensory and regulatory network that modulates vertebrate iron homeostasis. IRPs regulate iron metabolism by binding to iron responsive element(s) (IREs) in the 5′ or 3′ untranslated region of ferritin or transferrin receptor (TfR) mRNAs. Two IRPs, IRP1 and IRP2, have been identified previously. IRP1 exhibits two mutually exclusive functions as an RNA binding protein or as the cytosolic isoform of aconitase. We demonstrate that the Ba/F3 family of murine pro-B lymphocytes represents the first example of a mammalian cell line that fails to express IRP1 protein or mRNA. First, all of the IRE binding activity in Ba/F3-gp55 cells is attributable to IRP2. Second, synthesis of IRP2, but not of IRP1, is detectable in Ba/F3-gp55 cells. Third, the Ba/F3 family of cells express IRP2 mRNA at a level similar to other murine cell lines, but IRP1 mRNA is not detectable. In the Ba/F3 family of cells, alterations in iron status modulated ferritin biosynthesis and TfR mRNA level over as much as a 20- and 14-fold range, respectively. We conclude that IRP1 is not essential for regulation of ferritin or TfR expression by iron and that IRP2 can act as the sole IRE-dependent mediator of cellular iron homeostasis.
Resumo:
The stability of the ompA mRNA depends on the bacterial growth rate. The 5′ untranslated region is the stability determinant of this transcript and the target of the endoribonuclease, RNase E, the key player of mRNA degradation. An RNA-binding protein with affinity for the 5′ untranslated region ompA was purified and identified as Hfq, a host factor initially recognized for its function in phage Qβ replication. The ompA RNA-binding activity parallels the amount of Hfq, which is elevated in bacteria cultured at slow growth rate, a condition leading to facilitated degradation of the ompA mRNA. In hfq mutant cells with a deficient Hfq gene product, the RNA-binding activity is missing, and analysis of the ompA mRNA showed that the growth-rate dependence of degradation is lost. Furthermore, the half-life of the ompA mRNA is prolonged in the mutant cells, irrespective of growth rate. Hfq has no affinity for the lpp transcript whose degradation, like that of bulk mRNA, is not affected by bacterial growth rate. Compatible with our results, we found that the intracellular concentration of RNase E and its associated degradosome components is independent of bacterial growth rate. Thus our results suggest a regulatory role for Hfq that specifically facilitates the ompA mRNA degradation in a growth rate-dependent manner.
Resumo:
Snf, encoded by sans fille, is the Drosophila homolog of mammalian U1A and U2B′′ and is an integral component of U1 and U2 small nuclear ribonucleoprotein particles (snRNPs). Surprisingly, changes in the level of this housekeeping protein can specifically affect autoregulatory activity of the RNA-binding protein Sex-lethal (Sxl) in an action that we infer must be physically separate from Snf’s functioning within snRNPs. Sxl is a master switch gene that controls its own pre-mRNA splicing as well as splicing for subordinate switch genes that regulate sex determination and dosage compensation. Exploiting an unusual new set of mutant Sxl alleles in an in vivo assay, we show that Snf is rate-limiting for Sxl autoregulation when Sxl levels are low. In such situations, increasing either maternal or zygotic snf+ dose enhances the positive autoregulatory activity of Sxl for Sxl somatic pre-mRNA splicing without affecting Sxl activities toward its other RNA targets. In contrast, increasing the dose of genes encoding either the integral U1 snRNP protein U1-70k, or the integral U2 snRNP protein SF3a60, has no effect. Increased snf+ enhances Sxl autoregulation even when U1-70k and SF3a60 are reduced by mutation to levels that, in the case of SF3a60, demonstrably interfere with Sxl autoregulation. The observation that increased snf+ does not suppress other phenotypes associated with mutations that reduce U1-70k or SF3a60 is additional evidence that snf+ dose effects are not caused by increased snRNP levels. Mammalian U1A protein, like Snf, has a snRNP-independent function.
Resumo:
Epitopes depending on three-dimensional folding of proteins have during recent years been acknowledged to be main targets for many autoantibodies. However, a detailed resolution of conformation-dependent epitopes has to date not been achieved in spite of its importance for understanding the complex interaction between an autoantigen and the immune system. In analysis of immunodominant epitopes of the U1-70K protein, the major autoantigen recognized by human ribonucleoprotein (RNP)-positive sera, we have used diversely mutated recombinant Drosophila melanogaster 70K proteins as antigens in assays for human anti-RNP antibodies. Thus, the contribution of individual amino acids to antigenicity could be assayed with the overall structure of the major antigenic domain preserved, and analysis of how antigenicity can be reconstituted rather than obliterated was enabled. Our results reveal that amino acid residue 125 is situated at a crucial position for recognition by human anti-RNP autoantibodies and that flanking residues at positions 119–126 also appear to be of utmost importance for recognition. These results are discussed in relation to structural models of RNA-binding domains, and tertiary structure modeling indicates that the residues 119–126 are situated at easily accessible positions in the end of an α-helix in the RNA binding region. This study identifies a major conformation-dependent epitope of the U1-70K protein and demonstrates the significance of individual amino acids in conformational epitopes. Using this model, we believe it will be possible to analyze other immunodominant regions in which protein conformation has a strong impact.
Resumo:
rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin—a major nucleolar RNA-binding protein—contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.
Resumo:
Hypoxia is a prominent feature of malignant tumors that are characterized by angiogenesis and vascular hyperpermeability. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) has been shown to be up-regulated in the vicinity of necrotic tumor areas, and hypoxia potently induces VPF/VEGF expression in several tumor cell lines in vitro. Here we report that hypoxia-induced VPF/VEGF expression is mediated by increased transcription and mRNA stability in human M21 melanoma cells. RNA-binding/electrophoretic mobility shift assays identified a single 125-bp AU-rich element in the 3′ untranslated region that formed hypoxia-inducible RNA-protein complexes. Hypoxia-induced expression of chimeric luciferase reporter constructs containing this 125-bp AU-rich hypoxia stability region were significantly higher than constructs containing an adjacent 3′ untranslated region element without RNA-binding activity. Using UV-cross-linking studies, we have identified a series of hypoxia-induced proteins of 90/88 kDa, 72 kDa, 60 kDa, 56 kDa, and 46 kDa that bound to the hypoxia stability region element. The 90/88-kDa and 60-kDa species were specifically competed by excess hypoxia stability region RNA. Thus, increased VPF/VEGF mRNA stability induced by hypoxia is mediated, at least in part, by specific interactions between a defined mRNA stability sequence in the 3′ untranslated region and distinct mRNA-binding proteins in human tumor cells.
Resumo:
The GSG (GRP33, Sam68, GLD-1) domain is a protein module found in an expanding family of RNA-binding proteins. The numerous missense mutations identified genetically in the GSG domain support its physiological role. Although the exact function of the GSG domain is not known, it has been shown to be required for RNA binding and oligomerization. Here it is shown that the Sam68 GSG domain plays a role in protein localization. We show that Sam68 concentrates into novel nuclear structures that are predominantly found in transformed cells. These Sam68 nuclear bodies (SNBs) are distinct from coiled bodies, gems, and promyelocytic nuclear bodies. Electron microscopic studies show that SNBs are distinct structures that are enriched in phosphorus and nitrogen, indicating the presence of nucleic acids. A GFP-Sam68 fusion protein had a similar localization as endogenous Sam68 in HeLa cells, diffusely nuclear with two to five SNBs. Two other GSG proteins, the Sam68-like mammalian proteins SLM-1 and SLM-2, colocalized with endogenous Sam68 in SNBs. Different GSG domain missense mutations were investigated for Sam68 protein localization. Six separate classes of cellular patterns were obtained, including exclusive SNB localization and association with microtubules. These findings demonstrate that the GSG domain is involved in protein localization and define a new compartment for Sam68, SLM-1, and SLM-2 in cancer cell lines.
Resumo:
5-Lipoxygenase (5LO) plays a pivotal role in cellular leukotriene synthesis. To identify proteins interacting with human 5LO, we used a two-hybrid approach to screen a human lung cDNA library. From a total of 1.5 × 107 yeast transformants, nine independent clones representing three different proteins were isolated and found to specifically interact with 5LO. Four 1.7- to 1.8-kb clones represented a 16-kDa protein named coactosin-like protein for its significant homology with coactosin, a protein found to be associated with actin in Dictyostelium discoideum. Coactosin-like protein thus may provide a link between 5LO and the cytoskeleton. Two other yeast clones of 1.5 kb encoded transforming growth factor (TGF) type β receptor-I-associated protein 1 partial cDNA. TGF type β receptor-I-associated protein 1 recently has been reported to associate with the activated form of the TGF β receptor I and may be involved in the TGF β-induced up-regulation of 5LO expression and activity observed in HL-60 and Mono Mac 6 cells. Finally, three identical 2.1-kb clones contained the partial cDNA of a human protein with high homology to a hypothetical helicase K12H4.8 from Caenorhabditis elegans and consequently was named ΔK12H4.8 homologue. Analysis of the predicted amino acid sequence revealed the presence of a RNase III motif and a double-stranded RNA binding domain, indicative of a protein of nuclear origin. The identification of these 5LO-interacting proteins provides additional approaches to studies of the cellular functions of 5LO.
Resumo:
The Saccharomyces cerevisiae Rlp7 protein has extensive identity and similarity to the large ribosomal subunit L7 proteins and shares an RNA-binding domain with them. Rlp7p is not a ribosomal protein; however, it is encoded by an essential gene and therefore must perform a function essential for cell growth. In this report, we show that Rlp7p is a nucleolar protein that plays a critical role in processing of precursors to the large ribosomal subunit RNAs. Pulse–chase labeling experiments with Rlp7p-depleted cells reveal that neither 5.8SS, 5.8SL, nor 25S is produced, indicating that both the major and minor processing pathways are affected. Analysis of processing intermediates by primer extension indicates that Rlp7p-depleted cells accumulate the 27SA3 precursor RNA, which is normally the major substrate (85%) used to produce the 5.8S and 25S rRNAs, and the ratio of 27SBL to 27SBS precursors changes from approximately 1:8 to 8:1 (depleted cells). Because 27SA3 is the direct precursor to 27SBS, we conclude that Rlp7p is specifically required for the 5′ to 3′ exonucleolytic trimming of the 27SA3 into the 27SBS precursor. As it is essential for processing in both the major and minor pathways, we propose that Rlp7p may act as a specificity factor that binds precursor rRNAs and tethers the enzymes that carry out the early 5′ to 3′ exonucleolytic reactions that generate the mature rRNAs. Rlp7p may also be required for the endonucleolytic cleavage in internal transcribed spacer 2 that separates the 5.8S rRNA from the 25S rRNA.
Resumo:
Proteins are transported into and out of the cell nucleus via specific signals. The two best-studied nuclear transport processes are mediated either by classical nuclear localization signals or nuclear export signals. There also are shuttling sequences that direct the bidirectional transport of RNA-binding proteins. Two examples are the M9 sequence in heterogeneous nuclear ribonucleoprotein A1 and the heterogeneous nuclear ribonucleoprotein K shuttling domain (KNS) sequence in heterogeneous nuclear ribonucleoprotein K, both of which appear to contribute importantly to the export of mRNA to the cytoplasm. HuR is an RNA-binding protein that can stabilize labile mRNAs containing AU-rich elements in their 3′ untranslated regions and has been shown to shuttle between the nucleus and cytoplasm (18, 19). We have identified in HuR a shuttling sequence that also possess transcription-dependent nuclear localization signal activity. We propose that HuR first may bind AU-rich element-containing mRNAs in the nucleus and then escort them through the nuclear pore, providing protection during and after export to the cytoplasmic compartment.
Resumo:
A detailed computational analysis of 32 protein–RNA complexes is presented. A number of physical and chemical properties of the intermolecular interfaces are calculated and compared with those observed in protein–double-stranded DNA and protein–single-stranded DNA complexes. The interface properties of the protein–RNA complexes reveal the diverse nature of the binding sites. van der Waals contacts played a more prevalent role than hydrogen bond contacts, and preferential binding to guanine and uracil was observed. The positively charged residue, arginine, and the single aromatic residues, phenylalanine and tyrosine, all played key roles in the RNA binding sites. A comparison between protein–RNA and protein–DNA complexes showed that whilst base and backbone contacts (both hydrogen bonding and van der Waals) were observed with equal frequency in the protein–RNA complexes, backbone contacts were more dominant in the protein–DNA complexes. Although similar modes of secondary structure interactions have been observed in RNA and DNA binding proteins, the current analysis emphasises the differences that exist between the two types of nucleic acid binding protein at the atomic contact level.
Resumo:
The proto-oncogene c-myc (myc) encodes a transcription factor (Myc) that promotes growth, proliferation and apoptosis. Myc has been suggested to induce these effects by induction/repression of downstream genes. Here we report the identification of potential Myc target genes in a human B cell line that grows and proliferates depending on conditional myc expression. Oligonucleotide microarrays were applied to identify downstream genes of Myc at the level of cytoplasmic mRNA. In addition, we identified potential Myc target genes in nuclear run-on experiments by changes in their transcription rate. The identified genes belong to gene classes whose products are involved in amino acid/protein synthesis, lipid metabolism, protein turnover/folding, nucleotide/DNA synthesis, transport, nucleolus function/RNA binding, transcription and splicing, oxidative stress and signal transduction. The identified targets support our current view that myc acts as a master gene for growth control and increases transcription of a large variety of genes.
Resumo:
The K homology (KH) module is a widespread RNA-binding motif that has been detected by sequence similarity searches in such proteins as heterogeneous nuclear ribonucleoprotein K (hnRNP K) and ribosomal protein S3. Analysis of spatial structures of KH domains in hnRNP K and S3 reveals that they are topologically dissimilar and thus belong to different protein folds. Thus KH motif proteins provide a rare example of protein domains that share significant sequence similarity in the motif regions but possess globally distinct structures. The two distinct topologies might have arisen from an ancestral KH motif protein by N- and C-terminal extensions, or one of the existing topologies may have evolved from the other by extension, displacement and deletion. C-terminal extension (deletion) requires β-sheet rearrangement through the insertion (removal) of a β-strand in a manner similar to that observed in serine protease inhibitors serpins. Current analysis offers a new look on how proteins can change fold in the course of evolution.
Resumo:
SsrA RNA acts as a tRNA and mRNA to modify proteins whose synthesis on ribosomes has stalled. Such proteins are marked for degradation by addition of peptide tags to their C termini in a reaction mediated by SsrA RNA and SmpB, a specific SsrA-RNA binding protein. Evidence is presented here for the existence of a larger ribonucleoprotein complex that contains ribosomal protein S1, phosphoribosyl pyrophosphate synthase, RNase R, and YfbG in addition to SsrA RNA and SmpB. Biochemical, genetic, and phylogenetic results suggest potential roles for some of these factors in various stages of the ribosome rescue and tagging process and/or the presence of functional interactions between one or more of these proteins and SsrA.