892 resultados para River monitoring network


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Internet presents a constantly evolving frontier for criminology and policing, especially in relation to online predators – paedophiles operating within the Internet for safer access to children, child pornography and networking opportunities with other online predators. The goals of this qualitative study are to undertake behavioural research – identify personality types and archetypes of online predators and compare and contrast them with behavioural profiles and other psychological research on offline paedophiles and sex offenders. It is also an endeavour to gather intelligence on the technological utilisation of online predators and conduct observational research on the social structures of online predator communities. These goals were achieved through the covert monitoring and logging of public activity within four Internet Relay Chat(rooms) (IRC) themed around child sexual abuse and which were located on the Undernet network. Five days of monitoring was conducted on these four chatrooms between Wednesday 1 to Sunday 5 April 2009; this raw data was collated and analysed. The analysis identified four personality types – the gentleman predator, the sadist, the businessman and the pretender – and eight archetypes consisting of the groomers, dealers, negotiators, roleplayers, networkers, chat requestors, posters and travellers. The characteristics and traits of these personality types and archetypes, which were extracted from the literature dealing with offline paedophiles and sex offenders, are detailed and contrasted against the online sexual predators identified within the chatrooms, revealing many similarities and interesting differences particularly with the businessman and pretender personality types. These personality types and archetypes were illustrated by selecting users who displayed the appropriate characteristics and tracking them through the four chatrooms, revealing intelligence data on the use of proxies servers – especially via the Tor software – and other security strategies such as Undernet’s host masking service. Name and age changes, which is used as a potential sexual grooming tactic was also revealed through the use of Analyst’s Notebook software and information on ISP information revealed the likelihood that many online predators were not using any safety mechanism and relying on the anonymity of the Internet. The activities of these online predators were analysed, especially in regards to child sexual grooming and the ‘posting’ of child pornography, which revealed a few of the methods in which online predators utilised new Internet technologies to sexually groom and abuse children – using technologies such as instant messengers, webcams and microphones – as well as store and disseminate illegal materials on image sharing websites and peer-to-peer software such as Gigatribe. Analysis of the social structures of the chatrooms was also carried out and the community functions and characteristics of each chatroom explored. The findings of this research have indicated several opportunities for further research. As a result of this research, recommendations are given on policy, prevention and response strategies with regards to online predators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper provides an assessment of the performance of commercial Real Time Kinematic (RTK) systems over longer than recommended inter-station distances. The experiments were set up to test and analyse solutions from the i-MAX, MAX and VRS systems being operated with three triangle shaped network cells, each having an average inter-station distance of 69km, 118km and 166km. The performance characteristics appraised included initialization success rate, initialization time, RTK position accuracy and availability, ambiguity resolution risk and RTK integrity risk in order to provide a wider perspective of the performance of the testing systems. ----- ----- The results showed that the performances of all network RTK solutions assessed were affected by the increase in the inter-station distances to similar degrees. The MAX solution achieved the highest initialization success rate of 96.6% on average, albeit with a longer initialisation time. Two VRS approaches achieved lower initialization success rate of 80% over the large triangle. In terms of RTK positioning accuracy after successful initialisation, the results indicated a good agreement between the actual error growth in both horizontal and vertical components and the accuracy specified in the RMS and part per million (ppm) values by the manufacturers. ----- ----- Additionally, the VRS approaches performed better than the MAX and i-MAX when being tested under the standard triangle network with a mean inter-station distance of 69km. However as the inter-station distance increases, the network RTK software may fail to generate VRS correction and then may turn to operate in the nearest single-base RTK (or RAW) mode. The position uncertainty reached beyond 2 meters occasionally, showing that the RTK rover software was using an incorrect ambiguity fixed solution to estimate the rover position rather than automatically dropping back to using an ambiguity float solution. Results identified that the risk of incorrectly resolving ambiguities reached 18%, 20%, 13% and 25% for i-MAX, MAX, Leica VRS and Trimble VRS respectively when operating over the large triangle network. Additionally, the Coordinate Quality indicator values given by the Leica GX1230 GG rover receiver tended to be over-optimistic and not functioning well with the identification of incorrectly fixed integer ambiguity solutions. In summary, this independent assessment has identified some problems and failures that can occur in all of the systems tested, especially when being pushed beyond the recommended limits. While such failures are expected, they can offer useful insights into where users should be wary and how manufacturers might improve their products. The results also demonstrate that integrity monitoring of RTK solutions is indeed necessary for precision applications, thus deserving serious attention from researchers and system providers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is the first outdoor test of small-scale dye sensitized solar cells (DSC) powering a standalone nanosensor node. A solar cell test station (SCTS) has been developed using standard DSC to power a gas nanosensor, a radio transmitter, and the control electronics (CE) for battery charging. The station is remotely monitored through wired (Ethernet cable) or wireless connection (radio transmitter) in order to evaluate in real time the performance of the solar cells powering a nanosensor and a transmitter under different weather conditions. We analyze trends of energy conversion efficiency after 60 days of operation. The 408 cm2 active surface module produces enough energy to power a gas nanosensor and a radio transmitter during the day and part of the night. Also, by using a variable programmable load we keep the system working on the maximum power point (MPP) quantifying the total energy generated and stored in a battery. Although this technology is at an early stage of development, these experiments provide useful data for future outdoor applications such as nanosensor network nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In fault detection and diagnostics, limitations coming from the sensor network architecture are one of the main challenges in evaluating a system’s health status. Usually the design of the sensor network architecture is not solely based on diagnostic purposes, other factors like controls, financial constraints, and practical limitations are also involved. As a result, it quite common to have one sensor (or one set of sensors) monitoring the behaviour of two or more components. This can significantly extend the complexity of diagnostic problems. In this paper a systematic approach is presented to deal with such complexities. It is shown how the problem can be formulated as a Bayesian network based diagnostic mechanism with latent variables. The developed approach is also applied to the problem of fault diagnosis in HVAC systems, an application area with considerable modeling and measurement constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The health effects of environmental hazards are often examined using time series of the association between a daily response variable (e.g., death) and a daily level of exposure (e.g., temperature). Exposures are usually the average from a network of stations. This gives each station equal importance, and negates the opportunity for some stations to be better measures of exposure. We used a Bayesian hierarchical model that weighted stations using random variables between zero and one. We compared the weighted estimates to the standard model using data on health outcomes (deaths and hospital admissions) and exposures (air pollution and temperature) in Brisbane, Australia. The improvements in model fit were relatively small, and the estimated health effects of pollution were similar using either the standard or weighted estimates. Spatial weighted exposures would be probably more worthwhile when there is either greater spatial detail in the health outcome, or a greater spatial variation in exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New substation technology, such as non-conventional instrument transformers,and a need to reduce design and construction costs, are driving the adoption of Ethernet based digital process bus networks for high voltage substations. Protection and control applications can share a process bus, making more efficient use of the network infrastructure. This paper classifies and defines performance requirements for the protocols used in a process bus on the basis of application. These include GOOSE, SNMP and IEC 61850-9-2 sampled values. A method, based on the Multiple Spanning Tree Protocol (MSTP) and virtual local area networks, is presented that separates management and monitoring traffic from the rest of the process bus. A quantitative investigation of the interaction between various protocols used in a process bus is described. These tests also validate the effectiveness of the MSTP based traffic segregation method. While this paper focusses on a substation automation network, the results are applicable to other real-time industrial networks that implement multiple protocols. High volume sampled value data and time-critical circuit breaker tripping commands do not interact on a full duplex switched Ethernet network, even under very high network load conditions. This enables an efficient digital network to replace a large number of conventional analog connections between control rooms and high voltage switchyards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flood related scientific and community-based data are rarely systematically collected and analysed in the Philippines. Over the last decades the Pagsangaan River Basin, Leyte, has experienced several flood events. However, documentation describing flood characteristics such as extent, duration or height of these floods are close to non-existing. To address this issue, computerized flood modelling was used to reproduce past events where there was data available for at least partial calibration and validation. The model was also used to provide scenario-based predictions based on A1B climate change assumptions for the area. The most important input for flood modelling is a Digital Elevation Model (DEM) of the river basin. No accurate topographic maps or Light Detection And Ranging (LIDAR)-generated data are available for the Pagsangaan River. Therefore, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Map (GDEM), Version 1, was chosen as the DEM. Although the horizontal spatial resolution of 30 m is rather desirable, it contains substantial vertical errors. These were identified, different correction methods were tested and the resulting DEM was used for flood modelling. The above mentioned data were combined with cross-sections at various strategic locations of the river network, meteorological records, river water level, and current velocity to develop the 1D-2D flood model. SOBEK was used as modelling software to create different rainfall scenarios, including historic flooding events. Due to the lack of scientific data for the verification of the model quality, interviews with local stakeholders served as the gauge to judge the quality of the generated flood maps. According to interviewees, the model reflects reality more accurately than previously available flood maps. The resulting flood maps are now used by the operations centre of a local flood early warning system for warnings and evacuation alerts. Furthermore these maps can serve as a basis to identify flood hazard areas for spatial land use planning purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways, e.g. for payment systems or assisting the lives of elderly or disabled people. Security threats for these devices become more and more dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level and where third-party developers first time have the opportunity to develop kernel-based low-level security tools. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS, holding the greatest market share among all smartphone OSs, was even closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners privacy. Since signature-based approaches mainly detect known malwares, anomaly-based approaches can be a valuable addition to these systems. They base on mathematical algorithms processing data that describe the state of a certain device. For gaining this data, a monitoring client is needed that has to extract usable information (features) from the monitored system. Our approach follows a dual system for analyzing these features. On the one hand, functionality for on-device light-weight detection is provided. But since most algorithms are resource exhaustive, remote feature analysis is provided on the other hand. Having this dual system enables event-based detection that can react to the current detection need. In our ongoing research we aim to investigates the feasibility of light-weight on-device detection for certain occasions. On other occasions, whenever significant changes are detected on the device, the system can trigger remote detection with heavy-weight algorithms for better detection results. In the absence of the server respectively as a supplementary approach, we also consider a collaborative scenario. Here, mobile devices sharing a common objective are enabled by a collaboration module to share information, such as intrusion detection data and results. This is based on an ad-hoc network mode that can be provided by a WiFi or Bluetooth adapter nearly every smartphone possesses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. This paper first presents a brief review of the most inherent uncertainties of the SHM-oriented WSN platforms and then investigates their effects on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when employing merged data from multiple tests. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and Data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Experimental accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as clean data before being contaminated by different data pollutants in sequential manner to simulate practical SHM-oriented WSN uncertainties. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with SHM-WSN uncertainties. Finally, the use of the measurement channel projection for the time-domain OMA techniques and the preferred combination of the OMA techniques to cope with the SHM-WSN uncertainties is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Restoring a large-scale power system has always been a complicated and important issue. A lot of research work has been done on different aspects of the whole power system restoration procedure. However, more time will be required to complete the power system restoration process in an actual situation if accurate and real-time system data cannot be obtained. With the development of the wide area monitoring system (WAMS), power system operators are capable of accessing to more accurate data in the restoration stage after a major outage. The ultimate goal of the system restoration is to restore as much load as possible while in the shortest period of time after a blackout, and the restorable load can be estimated by employing WAMS. Moreover, discrete restorable loads are employed considering the limited number of circuit-breaker operations and the practical topology of distribution systems. In this work, a restorable load estimation method is proposed employing WAMS data after the network frame has been reenergized, and WAMS is also employed to monitor the system parameters in case the newly recovered system becomes unstable again. The proposed method has been validated with the New England 39-Bus system and an actual power system in Guangzhou, China.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robotic systems are increasingly being utilised as fundamental data-gathering tools by scientists, allowing new perspectives and a greater understanding of the planet and its environmental processes. Today's robots are already exploring our deep oceans, tracking harmful algal blooms and pollution spread, monitoring climate variables, and even studying remote volcanoes. This article collates and discusses the significant advancements and applications of marine, terrestrial, and airborne robotic systems developed for environmental monitoring during the last two decades. Emerging research trends for achieving large-scale environmental monitoring are also reviewed, including cooperative robotic teams, robot and wireless sensor network (WSN) interaction, adaptive sampling and model-aided path planning. These trends offer efficient and precise measurement of environmental processes at unprecedented scales that will push the frontiers of robotic and natural sciences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lake Wivenhoe Integrated Wireless Sensor Network is conceptually similar to traditional SCADA monitoring and control approaches. However, it is applied in an open system using wireless devices to monitor processes that affect water quality at both a high spatial and temporal frequency. This monitoring assists scientists to better understand drivers of key processes that influence water quality and provide the operators with an early warning system if below standard water enters the reservoir. Both of these aspects improve the safety and efficient delivery of drinking water to the end users.