985 resultados para Rho kinases


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receptors coupled to heterotrimeric G proteins can effectively stimulate growth promoting pathways in a large variety of cell types, and if persistently activated, these receptors can also behave as dominant-acting oncoproteins. Consistently, activating mutations for G proteins of the Gαs and Gαi2 families were found in human tumors; and members of the Gαq and Gα12 families are fully transforming when expressed in murine fibroblasts. In an effort aimed to elucidate the molecular events involved in proliferative signaling through heterotrimeric G proteins we have focused recently on gene expression regulation. Using NIH 3T3 fibroblasts expressing m1 muscarinic acetylcholine receptors as a model system, we have observed that activation of this transforming G protein-coupled receptors induces the rapid expression of a variety of early responsive genes, including the c-fos protooncogene. One of the c-fos promoter elements, the serum response element (SRE), plays a central regulatory role, and activation of SRE-dependent transcription has been found to be regulated by several proteins, including the serum response factor and the ternary complex factor. With the aid of reporter plasmids for gene expression, we observed here that stimulation of m1 muscarinic acetylcholine receptors potently induced SRE-driven reporter gene activity in NIH 3T3 cells. In these cells, only the Gα12 family of heterotrimeric G protein α subunits strongly induced the SRE, while Gβ1γ2 dimers activated SRE to a more limited extent. Furthermore, our study provides strong evidence that m1, Gα12 and the small GTP-binding protein RhoA are components of a novel signal transduction pathway that leads to the ternary complex factor-independent transcriptional activation of the SRE and to cellular transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bordetella dermonecrotizing toxin causes assembly of actin stress fibers and focal adhesions in some cultured cells and induces mobility shifts of the small GTP-binding protein Rho on electrophoresis. We attempted to clarify the molecular basis of the toxin action on Rho. Analysis of the amino acid sequence of toxin-treated RhoA revealed the deamidation of Gln-63 to Glu. The substitution of Glu for Gln-63 of RhoA by site-directed mutagenesis caused a mobility shift on electrophoresis, which was indistinguishable from that of the toxin-treated RhoA. Neither mutant RhoA-bearing Glu-63 nor toxin-treated RhoA significantly differed from untreated wild type RhoA in guanosine 5′-[γ-thio]triphosphate binding activity but both showed a 10-fold reduction in GTP hydrolysis activity relative to untreated RhoA. C3H10T1/2 cells transfected with cDNA of the mutant RhoA bearing Glu-63 showed extensive formation of actin stress fibers similar to the toxin-treated cells. These results indicate that the toxin catalyzes deamidation of Gln-63 of Rho and renders it constitutively active, leading to formation of actin stress fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar UV irradiation is the causal factor for the increasing incidence of human skin carcinomas. The activation of the transcription factor activator protein-1 (AP-1) has been shown to be responsible for the tumor promoter action of UV light in mammalian cells. We demonstrate that proteinase inhibitor I (Inh I) and II (Inh II) from potato tubers, when applied to mouse epidermal JB6 cells, block UV-induced AP-1 activation. The inhibition appears to be specific for UV-induced signal transduction for AP-1 activation, because these inhibitors did not block UV-induced p53 activation nor did they exhibit any significant influence on epidermal growth factor-induced AP-1 transactivation. Furthermore, the inhibition of UV-induced AP-1 activity occurs through a pathway that is independent of extracellular signal-regulated kinases and c-Jun N-terminal kinases as well as P38 kinases. Considering the important role of AP-1 in tumor promotion, it is possible that blocking UV-induced AP-1 activity by Inh I or Inh II may be functionally linked to irradiation-induced cell transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transduction pathways that mediate activation of serum response factor (SRF) by heterotrimeric G protein α subunits were characterized in transfection systems. Gαq, Gα12, and Gα13, but not Gαi, activate SRF through RhoA. When Gαq, α12, or α13 were coexpressed with a Rho-specific guanine nucleotide exchange factor GEF115, Gα13, but not Gαq or Gα12, showed synergistic activation of SRF with GEF115. The synergy between Gα13 and GEF115 depends on the N-terminal part of GEF115, and there was no synergistic effect between Gα13 and another Rho-specific exchange factor Lbc. In addition, the Dbl-homology (DH)-domain-deletion mutant of GEF115 inhibited Gα13- and Gα12-induced, but not GEF115 itself- or Gαq-induced, SRF activation. The DH-domain-deletion mutant also suppressed thrombin- and lysophosphatidic acid-induced SRF activation in NIH 3T3 cells, probably by inhibition of Gα12/13. The N-terminal part of GEF115 contains a sequence motif that is homologous to the regulator of G protein signaling (RGS) domain of RGS12. RGS12 can inhibit both Gα12 and Gα13. Thus, the inhibition of Gα12/13 by the DH-deletion mutant may be due to the RGS activity of the mutant. The synergism between Gα13 and GEF115 indicates that GEF115 mediates Gα13-induced activation of Rho and SRF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The n-type K+ channel (n-K+, Kv1.3) in lymphocytes has been recently implicated in the regulation of Fas-induced programmed cell death. Here, we demonstrate that ceramide, a lipid metabolite synthesized upon Fas receptor ligation, inhibits n-K+ channel activity and induces a tyrosine phosphorylation of the Kv1.3 protein in Jurkat T lymphocytes. Tyrosine phosphorylation of the n-K+ channel correlated with an activation of the Src-like tyrosine kinase p56lck upon cellular treatment with the ceramide analog C6-ceramide. Because genetic deficiency of p56lck or inhibition of Src-like tyrosine kinases by herbimycin A prevented ceramide-mediated n-K+ channel inhibition and tyrosine phosphorylation, we propose a ceramide-initiated activation of p56lck resulting in tyrosine phosphorylation and inhibition of the n-K+ channel protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of the central nervous system requires proliferation of neuronal and glial cell precursors followed by their subsequent differentiation in a highly coordinated manner. The timing of neuronal cell cycle exit and differentiation is likely to be regulated in part by inhibitors of cyclin-dependent kinases. Overlapping and sustained patterns of expression of two cyclin-dependent kinases, p19Ink4d and p27Kip1, in postmitotic brain cells suggested that these proteins may be important in actively repressing neuronal proliferation. Animals derived from crosses of Ink4d- null with Kip1-null mice exhibited bradykinesia, proprioceptive abnormalities, and seizures, and died at about 18 days after birth. Metabolic labeling of live animals with bromodeoxyuridine at postnatal days 14 and 18, combined with immunolabeling of neuronal markers, showed that subpopulations of central nervous system neurons were proliferating in all parts of the brain, including normally dormant cells of the hippocampus, cortex, hypothalamus, pons, and brainstem. These cells also expressed phosphorylated histone H3, a marker for late G2 and M-phase progression, indicating that neurons were dividing after they had migrated to their final positions in the brain. Increased proliferation was balanced by cell death, resulting in no gross changes in the cytoarchitecture of the brains of these mice. Therefore, p19Ink4d and p27Kip1 cooperate to maintain differentiated neurons in a quiescent state that is potentially reversible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress-activated protein kinases JNK and p38 mediate increased gene expression and are activated by environmental stresses and proinflammatory cytokines. Using an in vivo model in which oxidative stress is generated in the liver by intracellular metabolism, rapid protein–DNA complex formation on stress-activated AP-1 target genes was observed. Analysis of the induced binding complexes indicates that c-fos, c-jun, and ATF-2 were present, but also two additional jun family members, JunB and JunD. Activation of JNK precedes increased AP-1 DNA binding. Furthermore, JunB was shown to be a substrate for JNK, and phosphorylation requires the N-terminal activation domain. Unexpectedly, p38 activity was found to be constitutively active in the liver and was down-regulated through selective dephosphorylation following oxidative stress. One potential mechanism for p38 dephosphorylation is the rapid stress-induced activation of the phosphatase MKP-1, which has high affinity for phosphorylated p38 as a substrate. These data demonstrate that there are mechanisms for independent regulation of the JNK and p38 mitogen-activated protein kinase signal transduction pathways after metabolic oxidative stress in the liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CST20 gene of Candida albicans was cloned by functional complementation of a deletion of the STE20 gene in Saccharomyces cerevisiae. CST20 encodes a homolog of the Ste20p/p65PAK family of protein kinases. Colonies of C. albicans cells deleted for CST20 revealed defects in the lateral formation of mycelia on synthetic solid “Spider” media. However, hyphal development was not impaired in some other media. A similar phenotype was caused by deletion of HST7, encoding a functional homolog of the S. cerevisiae Ste7p protein kinase. Overexpression of HST7 partially complemented the deletion of CST20. Cells deleted for CST20 were less virulent in a mouse model for systemic candidiasis. Our results suggest that more than one signaling pathway can trigger hyphal development in C. albicans, one of which has a protein kinase cascade that is analogous to the mating response pathway in S. cerevisiae and might have become adapted to the control of mycelial formation in asexual C. albicans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caenorhabditis elegans should soon be the first multicellular organism whose complete genomic sequence has been determined. This achievement provides a unique opportunity for a comprehensive assessment of the signal transduction molecules required for the existence of a multicellular animal. Although the worm C. elegans may not much resemble humans, the molecules that regulate signal transduction in these two organisms prove to be quite similar. We focus here on the content and diversity of protein kinases present in worms, together with an assessment of other classes of proteins that regulate protein phosphorylation. By systematic analysis of the 19,099 predicted C. elegans proteins, and thorough analysis of the finished and unfinished genomic sequences, we have identified 411 full length protein kinases and 21 partial kinase fragments. We also describe 82 additional proteins that are predicted to be structurally similar to conventional protein kinases even though they share minimal primary sequence identity. Finally, the richness of phosphorylation-dependent signaling pathways in worms is further supported with the identification of 185 protein phosphatases and 128 phosphoprotein-binding domains (SH2, PTB, STYX, SBF, 14-3-3, FHA, and WW) in the worm genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-hybrid technology provides a simple way to isolate small peptide aptamers that specifically recognize and strongly bind to a protein of interest. These aptamers have the potential to dominantly interfere with specific activities of their target proteins and, therefore, could be used as in vivo inhibitors. Here we explore the ability to use peptide aptamers as in vivo inhibitors by expressing aptamers directed against cell cycle regulators in Drosophila. We expressed two peptide aptamers, each of which specifically recognizes one of the two essential cyclin-dependent kinases (Cdks), DmCdk1 and DmCdk2, in Drosophila. Expression of each Cdk aptamer during organogenesis caused adult eye defects typical of those caused by cell cycle inhibition. Co-overexpression of DmCdk1 or DmCdk2 resulted in suppression of the eye phenotypes, indicating that each aptamer interacts with a Cdk target in vivo and suggesting that these peptides disrupt normal eye development by inhibiting Cdk function. Moreover, the specificity of each aptamer for one of the two Cdks as determined in two-hybrid assays was retained in Drosophila. Combined, our results demonstrate that peptide aptamers generated by yeast two-hybrid methods can serve as inhibitory reagents to target specific proteins in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The several hundred members of the eukaryotic protein kinase superfamily characterized to date share a similar catalytic domain structure, consisting of 12 conserved subdomains. Here we report the existence and wide occurrence in eukaryotes of a protein kinase with a completely different structure. We cloned and sequenced the human, mouse, rat, and Caenorhabditis elegans eukaryotic elongation factor-2 kinase (eEF-2 kinase) and found that with the exception of the ATP-binding site, they do not contain any sequence motifs characteristic of the eukaryotic protein kinase superfamily. Comparison of different eEF-2 kinase sequences reveals a highly conserved region of ≈200 amino acids which was found to be homologous to the catalytic domain of the recently described myosin heavy chain kinase A (MHCK A) from Dictyostelium. This suggests that eEF-2 kinase and MHCK A are members of a new class of protein kinases with a novel catalytic domain structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three yeast A kinase catalytic subunit isoforms are redundant for viability. We demonstrate that they have dramatically different roles in pseudohyphal development: Tpk2 is essential, whereas Tpk3 inhibits. Tpk1 has no discernible effect. Two-hybrid analysis identified the transcription factor Sfl1 as a protein that interacts specifically with Tpk2, but not Tpk1 or Tpk3. Deletion of SFL1 enhances pseudohyphal and invasive growth. Flo11, a cell surface flocculin required for pseudohyphal development, is transcriptionally regulated by Tpk2 and Sfl1. Genetic evidence indicates that Tpk2 acts upstream of Sfl1 in the regulation of Flo11.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously identified a cellular protein kinase activity termed TAK that specifically associates with the HIV types 1 and 2 Tat proteins. TAK hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II in vitro in a manner believed to activate transcription [Herrmann, C. H. & Rice, A. P. (1995) J. Virol. 69, 1612–1620]. We show here that the catalytic subunit of TAK is a known human kinase previously named PITALRE, which is a member of the cyclin-dependent family of proteins. We also show that TAK activity is elevated upon activation of peripheral blood mononuclear cells and peripheral blood lymphocytes and upon differentiation of U1 and U937 promonocytic cell lines to macrophages. Therefore, in HIV-infected individuals TAK may be induced in T cells following activation and in macrophages following differentiation, thus contributing to high levels of viral transcription and the escape from latency of transcriptionally silent proviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of cyanobacterial phytochrome histidine kinases, together with the evidence that phytochromes from higher plants display protein kinase activity, bind ATP analogs, and possess C-terminal domains similar to bacterial histidine kinases, has fueled the controversial hypothesis that the eukaryotic phytochrome family of photoreceptors are light-regulated enzymes. Here we demonstrate that purified recombinant phytochromes from a higher plant and a green alga exhibit serine/threonine kinase activity similar to that of phytochrome isolated from dark grown seedlings. Phosphorylation of recombinant oat phytochrome is a light- and chromophore-regulated intramolecular process. Based on comparative protein sequence alignments and biochemical cross-talk experiments with the response regulator substrate of the cyanobacterial phytochrome Cph1, we propose that eukaryotic phytochromes are histidine kinase paralogs with serine/threonine specificity whose enzymatic activity diverged from that of a prokaryotic ancestor after duplication of the transmitter module.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cadherins are cell–cell adhesion receptors whose adhesive function requires their association with the actin cytoskeleton via proteins called catenins. The small guanosine triphosphatases (GTPases), Rho and Rac, are intracellular proteins that regulate the formation of distinct actin structures in different cell types. In keratinocytes and in other epithelial cells, Rho and Rac activities are required for E-cadherin function. Here we show that the regulation of cadherin adhesiveness by the small GTPases is influenced by the maturation status of the junction and the cellular context. E-cadherin localization was disrupted in mature keratinocyte junctions after inhibition of Rho and Rac. However, an incubation of 2 h was required after GTPase inhibition, when compared with newly established E-cadherin contacts (30 min). Regarding other cadherin receptors, P-cadherin was effectively removed from mature keratinocytes junctions by blocking Rho or Rac. In contrast, VE-cadherin localization at endothelial junctions was independent of Rho/Rac activity. We demontrate that the insensitivity of VE-cadherin to inhibition of Rho and Rac was not due to the maturation status of endothelial junction, but rather the cellular background: when transfected into CHO cells, the localization of VE-cadherin was perturbed by inhibition of Rho proteins. Our results suggest that the same stimuli may have different activity in regulating the paracellular activity in endothelial and epithelial cells. In addition, we uncovered possible roles for the small GTPases during the establishment of E-cadherin–dependent contacts. In keratinocytes, Rac activation by itself cannot promote accumulation of actin at the cell periphery in the absence of cadherin-dependent contacts. Moreover, neither Rho nor Rac activation was sufficient to redistribute cadherin molecules to cell borders, indicating that redistribution results mostly from the homophilic binding of the receptors. Our results point out the complexity of the regulation of cadherin-mediated adhesion by the small GTPases, Rho and Rac.