995 resultados para Restriction enzymes, DNA.
Resumo:
Protein extracts obtained from male and female shistosomes were incubated with a gender-specific gene, F-10, transcribed only in adult females and encoding a major egg-shell protein. The protein/DNA interaction was measured using the band shift, DNase-I-footprinting and UV cross-linking techniques. The results showed a clear band shift when a 302 bp restriction fragment containing the 3'end of the gene was incubated with either female or male proteins. This fragment also contained a putative steroid hormone regulatory element (HRE). In contrast, only the male proteins produced a shift with the 495 bp fragment corresponding to the middle region of the gene. DNase I footprinting showed that proteins from males and females interacted with the F-10 gene by binding to multiple adjacent sites along the DNA, thus generatingrelatively long protected fragments of approximately 100 bp. This result suggested that the adjacent binding of several moles of proteins occured at the 5'end of the gene. UV cross-linking between schistosome proteins and a 21 bp synthetic oligonucleotide the F-10 HRE, evidence proteins having MWS of 30,45 and 65 kDNA. These proteins are presumably involved in the regulation of transcription of the F-10 gene.
Resumo:
Les membres de l'ordre des Chlamydiales peuvent infecter un choix étendu d'animaux, insectes, et protistes. Comme toutes bactéries intracellulaires obligatoires, les Chlamydiales ont besoin d'une cellule hôte pour se répliquer. Chaque fois qu'une cellule est infectée une lutte commence entre les mécanismes de défense de la cellule et l'arsenal de facteurs de virulence de la bactérie. Dans cette thèse nous nous sommes intéressés à déterminer le rôle de deux mécanismes de l'immunité innée de l'hôte. En premier, nous avons étudié les NADPH oxidases, une source de molécules superoxydantes (MSO). Leur rôle dans la restriction de la réplication de Waddlia chondrophila et Estrella iausannensis a été étudié dans l'organisme modèle Dictyostelium discoideum et les macrophages humains. Différentes protéines Nox étaient nécessaires pour contrôler la réplication de W. chondrophila ou E. Iausannensis. De plus, nous avons déterminé que parmi les Chlamydiales, cinq espèces possédaient une catalase. Cette enzyme peut dégrader l'eau oxygénée, une MSO. L'activité de la catalase a été démontrée in vitro et dans les corps élémentaires. Avant de pouvoir étudier le rôle de NOX2 dans des macrophages infectés avec E. Iausannensis, nous avons dû établir la capacité de la bactérie à se répliquer clans les macrophages avec son trafic intracellulaire. Le deuxième mécanisme d'immunité innée que nous avons étudié est l'autophagie. Dans les cellules infectées l'autophagie permet de digérer les bactéries envahissantes. Deux protéines de la voie autophagique (Atg1 et Atg8) jouent un rôle dans la restriction de la croissance de W. chondrophila dans D. discoideum. D'avantage d'études sur l'immunité innée et les bactéries apparentés aux Chlamydia sont indispensables, car les réponses paraissent être spécifiques pour chaque espèce. - Members of the Chlamydiales order are able to infect a large variety of animals, insects, and protists. These obligate intracellular bacteria require a host cell for replication. Each time a cell is infected a struggle begins between the virulence arsenal of the bacteria and the defense mechanisms activated by the host. Each bacterial species will exhibit a selection of virulence factors that will allow it to overcome the defense of the host in some species, but not others. In this thesis we were interested in dissecting the role of two host innate immunity mechanisms. First we determined the role of NADPH oxidases, a source of reactive oxygen species (ROS), in restricting replication of Waddlia chondrophila and EstreHa lausannensis in the model organism Dictyostelium discoideum and human macrophages. Different Nox proteins were required to restrict growth of W. chondrophila and E. lausannensis. Additionally, we determined that five Chlamydia- related bacterial species encode for catalase, an enzyme that is able to degrade hydrogen peroxide, a ROS. The activity of the catalase was demonstrated in vitro and in elementary bodies. To study the role of NOX2 in macrophages for E. lausannensis we first had to determine the ability of E. lausannensis to grow in macrophages. Besides demonstrating its replication we also determined the intracellular trafficking of E. lausannensis. The second innate immunity mechanism studied was autophagy. Through autophagy bacteria can be targeted to degradation. Atg1 and Atg8, two autophagic proteins appeared restrict W. chondrophila replication in D. discoideum. More studies on innate immunity and Chlamydia-related bacteria are required. It appears that the responses to innate immunity are species specific and it will be difficult to generalize data obtained for W. chondrophila to the Chlamydiales order.
Resumo:
In this review, intratumoral drug disposition will be integrated into the wide range of resistance mechanisms to anticancer agents with particular emphasis on targeted protein kinase inhibitors. Six rules will be established: 1. There is a high variability of extracellular/intracellular drug level ratios; 2. There are three main systems involved in intratumoral drug disposition that are composed of SLC, ABC and XME enzymes; 3. There is a synergistic interplay between these three systems; 4. In cancer subclones, there is a strong genomic instability that leads to a highly variable expression of SLC, ABC or XME enzymes; 5. Tumor-expressed metabolizing enzymes play a role in tumor-specific ADME and cell survival and 6. These three systems are involved in the appearance of resistance (transient event) or in the resistance itself. In addition, this article will investigate whether the overexpression of some ABC and XME systems in cancer cells is just a random consequence of DNA/chromosomal instability, hypo- or hypermethylation and microRNA deregulation, or a more organized modification induced by transposable elements. Experiments will also have to establish if these tumor-expressed enzymes participate in cell metabolism or in tumor-specific ADME or if they are only markers of clonal evolution and genomic deregulation. Eventually, the review will underline that the fate of anticancer agents in cancer cells should be more thoroughly investigated from drug discovery to clinical studies. Indeed, inhibition of tumor expressed metabolizing enzymes could strongly increase drug disposition, specifically in the target cells resulting in more efficient therapies.
Resumo:
During an epidemiological survey of acute respiratory infection in Rio de Janeiro, among 208 adenovirus isolates, we found two strains that we were not able, by a standard neutralization procedure, to distinguish between type 3 or 7. However, DNA restriction pattern for the two strains with different enzymes were analyzed and showed a typical Ad3h profile. Using a cross-neutralization test in which both Ad3p and Ad7p antisera were used in different concentration against 100 TCID50 of each adenovirus standard and both isolates, we were able to confirm that the two isolates belong to serotype 3. An hemagglutination inhibition test also corroborated the identification of both strains as adenovirus type 3. Comparing Ad3h and Ad3p genome, we observed 16 different restriction enzyme sites, three of which were located in genomic regions encoding polypeptides involved in neutralization sites
Resumo:
Molecular characterization of one stable strain of Trypanosoma cruzi, the 21 SF, representative of the pattern of strains isolated from the endemic area of São Felipe, State of Bahia, Brazil, maintained for 15 years in laboratory by serial passages in mice and classified as biodeme Type II and zymodeme 2 has been investigated. The kinetoplast DNA (kDNA) of parental strain, 5 clones and 14 subclones were analyzed. Schizodeme was established by comparative study of the fragments obtained from digestion of the 330-bp fragments amplified by polymerase chain reaction (PCR) from the variable regions of the minicicles, and digested by restriction endonucleases Rsa I and Hinf I. Our results show a high percentual of similarity between the restriction fragment lenght polymorphism (RFLP) for the parental strain and its clones and among these individual clones and their subclones at a level of 80 to 100%.This homology indicates a predominance of the same "principal clone" in the 21SF strain and confirms the homogeneity previously observed at biological and isozymic analysis. These results suggest the possibility that the T. cruzi strains with similar biological and isoenzymic patterns, circulating in this endemic area, are representative of one dominant clone. The presence of "principal clones" could be responsible for a predominant tropism of the parasites for specific organs and tissues and this could contribute to the pattern of clinico-pathological manifestations of Chagas's disease in one geographical area.
Resumo:
The polymerase chain reaction and restriction fragment length polymorphism (RFLP) of the internal transcribed spacer (ITS) region of the rRNA gene, using the enzyme DdeI were used for the molecular identification of ten species and one subspecies of Brazilian Biomphalaria. Emphasis is given to the analysis of B. oligoza, B. schrammi and B. amazonica. The RFLP profiles obtained using this enzyme were highly distinctive for the majority of the species and exhibited low levels of intraspecific polymorphism among specimens from different regions of Brazil. However, B. peregrina and B. oligoza presented very similar profiles that complicated their identification at the molecular level and suggested a very close genetic similarity between the two species. Others enzymes including HaeIII, HpaII, AluI and MnlI were tested for their ability to differentiate these species. For B. amazonica three variant profiles produced with DdeI were observed. The study demonstrated that the ITS contains useful genetic markers for the identification of these snails
Resumo:
The combination of molecular and conventional epidemiological methods has improved the knowledge about the transmission of tuberculosis in urban populations. To examine transmission of tuberculosis in Havana, Cuba, with DNA fingerprinting, we studied 51 out of 92 Mycobacterium tuberculosis strains isolated from tuberculosis patients who resided in Havana and whose infection was culture-confirmed in the period from September 1997 to March 1998. Isolates from 28 patients (55%) had unique IS6110 restriction fragment length polymorphism (RFLP) patterns, while isolates from 23 others (45%) had identical patterns and belonged to 7 clusters. Three clusters consisting of six, five and two cases were each related to small outbreaks that occurred in a closed setting. Three other clustered cases were linked to a large outbreak that occurred in another institution. Younger patients were more correlated to clustering than older ones. The finding that 45% of the isolates had clustered RFLP patterns suggests that recent transmission is a key factor in the tuberculosis cases in Havana. The IS6110 RFLP typing made it possible to define the occurrence of outbreaks in two closed institutions.
Resumo:
In Cuba, several Biomphalaria species have been reported such as B. orbignyi, B. schrammi, B. helophila, B. havanensis and B. peregrina; only the latter three are considered as potential hosts of Schistosoma mansoni. The specific identification of Biomphalaria species is based on anatomical and morphological characters of genital organs and shells. The correct identification of these snails is complicated by the high variation in these characters, similarity among species and in some cases by the small size of the snails. In this paper, we reported the classical morphological identification, the use of PCR and RFLP analysis of the internal transcribed spacer region of the ribosomal RNA genes for molecular identification of seven snail populations from different localities in Cuba. Using morphological and molecular analysis, we showed that among the studied Cuban Biomphalaria populations only B. havanensis and B. obstructa species were found.
Resumo:
Diagnosis of the Mycobacterium tuberculosis complex by direct PCR of mediastinal lymphnode DNA and microbiological tests were compared in cattle suspicious of bearing tuberculous-like lesions detected during slaughter. The PCR procedure applied on DNA samples (n=54) obtained by adding alpha -casein into the thiocyanate extraction mix was positive in 70% of the samples. PCR confirmed the identification of 23 samples (100%) that grew in culture, 9 samples (60%) that failed to grow in culture, plus 6 (37.5%) samples that resulted in growth of bacterial contaminants. Genotyping by IS6110-RFLP and DR-spoligotyping analysis of seven samples revealed the presence of several polimorphisms. Seven of the isolates contained multiple copies of IS6110, thus defining the existence of five singular genotypes.
Resumo:
American trypanosomiasis is a common zoonosis in Colombia and Trypanosoma cruzi presents a wide distribution throughout the country. Although some studies based on enzyme electrophoresis profiles have described the population structure of the parasite, very few molecular analyses of genotipic markers have been conducted using Colombian strains. In this study, we amplified the non-transcribed spacer of the mini-gene by PCR, typing the isolates as T. cruzi I, T. cruzi zymodeme 3 or T. rangeli. In addition, the internal transcribed spacers of the ribosomal gene concomitant with the 5.8S rDNA were amplified and submitted to restriction fragment polymorphism analysis. The profiles were analyzed by a numerical methodology generating a phenetic dendrogram that shows heterogeneity among the T. cruzi isolates. This finding suggests a relationship between the complexity of the sylvatic transmission cycle in Colombia and the diversity of the sylvan parasites.
Resumo:
The intermediate hosts of Schistosoma mansoni, in Brazil, Biomphalaria glabrata, B. tenagophila and B. straminea, were identified by restriction fragment length polymorphism analysis of the mitochondrial gene cytochrome oxidase I (COI). We performed digestions with two enzymes (AluI and RsaI), previously selected, based on sequences available in Genbank. The profiles obtained with RsaI showed to be the most informative once they were polymorphic patterns, corroborating with much morphological data. In addition, we performed COI digestion of B. straminea snails from Uruguay and Argentina.
Resumo:
Tuberculosis (TB) is a major concern in developing countries. In Brazil, few genotyping studies have been conducted to verify the number of IS6110 copies present in local prevalent strains of Mycobacterium tuberculosis, the distribution and clustering of strains. IS6110 DNA fingerprinting was performed on a sample of M. tuberculosis isolates from patients with AFB smear-positive pulmonary TB, at a hospital in Brazil. The IS6110 profiles were analyzed and compared to a M. tuberculosis database of the Houston Tuberculosis Initiative, Houston, US. Seventy-six fingerprints were obtained from 98 patients. All M. tuberculosis strains had an IS6110 copy number between 5-21 allowing for differentiation of the isolates. Human immunodeficiency virus infection was confirmed in nearly half the patients of whom data was available. Fifty-eight strains had unique patterns, while 17 strains were grouped in 7 clusters (2 to 6 strains). When compared to the HTI database, 6 strains matched isolates from El Paso, Ciudad de Juarez, Houston, and New York. Recently acquired infections were documented in 19% of cases. The community transmission of infection is intense, since some clustered strains were recovered during the four-year study period. The intercontinental dissemination of M. tuberculosis strains is suspected by demonstration of identical fingerprints in a distant country.
Resumo:
The first and second internal transcribed spacer regions (ITS1 and ITS2) of the ribosomal DNA of Biomphalaria tenagophila complex (B. tenagophila, B. occidentalis, and B. t. guaibensis) were sequenced and compared. The alignment lengths of these regions were about 655 bp and 481 bp, respectively. Phylogenetic relationships among the Biomphalaria species were inferred by Maximum Parsimony and Neighbor-joining methods. The phylogenetic trees produced, in most of the cases, were in accordance with morphological systematics and other molecular data previously obtained by polymerase chain reaction and restriction fragment length polymorphism analysis. The present results provide support for the proposal that B. tenagophila represents a complex comprising B. tenagophila, B. occidentalis and B. t. guaibensis.
Resumo:
Freshwater snails belonging to the genus Biomphalaria act as intermediate hosts for the parasite trematode Schistosoma mansoni in Africa and in the neotropical region. Identification of such molluscs is carried out based on morphological characters and the presence of cercariae is verified through squeezing snails between two glass slides or by exposing them to artificial light. However, sometimes, the material collected includes molluscs with decomposed bodies or, yet, only empty shells, which precludes their identification and S. mansoni detection. Due to these difficulties, we have developed a methodology in which DNA may be extracted from traces of organic material from inside shells in order to identify molluscs through polymerase chain reaction and restriction fragment length polymorphism and to detect S. mansoni into these snails, by using low stringency polymerase chain reaction. Species-specific profiles obtained from B. glabrata, B. straminea, and B. tenagophila snails and their shells, maintained in laboratory for ten years, showed the same profiles. S. mansoni profiles showed to be present in shell specimens as far as the eighth week after being removed from aquarium.
Resumo:
Schistosoma mansoni, an intravascular parasite, lives in a hostile environment in close contact with host humoral and cellular cytotoxic factors. To establish itself in the host, the parasite has evolved a number of immune evasion mechanisms, such as antioxidant enzymes. Our laboratory has demonstrated that the expression of antioxidant enzymes is developmentally regulated, with the highest levels present in the adult worm, the stage least susceptible to immune elimination, and the lowest levels in the larval stages, the most susceptible to immune elimination. Vaccination of mice with naked DNA constructs containing Cu/Zn cytosolic superoxide dismutase (CT-SOD), signal-peptide containing SOD or glutathione peroxidase (GPX) showed significant levels of protection compared to a control group. We have further shown that vaccination with SmCT-SOD but not SmGPX results in elimination of adult worms. Anti-oxidant enzyme vaccine candidates offer an advance over existing vaccine strategies that all seem to target the larval developmental stages in that they target adult worms and thus may have therapeutic as well as prophylactic value. To eliminate the potential for cross-reactivity of SmCT-SOD with human superoxide dismutase, we identified parasite-specific epitope-containing peptides. Our results serve as a basis for developing a subunit vaccine against schistosomiasis.