949 resultados para Resource Assessment
Resumo:
The regimen of environmental flows (EF) must be included as terms of environmental demand in the management of water resources. Even though there are numerous methods for the computation of EF, the criteria applied at different steps in the calculation process are quite subjective whereas the results are fixed values that must be meet by water planners. This study presents a friendly-user tool for the assessment of the probability of compliance of a certain EF scenario with the natural regimen in a semiarid area in southern Spain. 250 replications of a 25-yr period of different hydrological variables (rainfall, minimum and maximum flows, ...) were obtained at the study site from the combination of Monte Carlo technique and local hydrological relationships. Several assumptions are made such as the independence of annual rainfall from year to year and the variability of occurrence of the meteorological agents, mainly precipitation as the main source of uncertainty. Inputs to the tool are easily selected from a first menu and comprise measured rainfall data, EF values and the hydrological relationships for at least a 20-yr period. The outputs are the probabilities of compliance of the different components of the EF for the study period. From this, local optimization can be applied to establish EF components with a certain level of compliance in the study period. Different options for graphic output and analysis of results are included in terms of graphs and tables in several formats. This methodology turned out to be a useful tool for the implementation of an uncertainty analysis within the scope of environmental flows in water management and allowed the simulation of the impacts of several water resource development scenarios in the study site.
Resumo:
An underwater gas pipeline is the portion of the pipeline that crosses a river beneath its bottom. Underwater gas pipelines are subject to increasing dangers as time goes by. An accident at an underwater gas pipeline can lead to technological and environmental disaster on the scale of an entire region. Therefore, timely troubleshooting of all underwater gas pipelines in order to prevent any potential accidents will remain a pressing task for the industry. The most important aspect of resolving this challenge is the quality of the automated system in question. Now the industry doesn't have any automated system that fully meets the needs of the experts working in the field maintaining underwater gas pipelines. Principle Aim of this Research: This work aims to develop a new system of automated monitoring which would simplify the process of evaluating the technical condition and decision making on planning and preventive maintenance and repair work on the underwater gas pipeline. Objectives: Creation a shared model for a new, automated system via IDEF3; Development of a new database system which would store all information about underwater gas pipelines; Development a new application that works with database servers, and provides an explanation of the results obtained from the server; Calculation of the values MTBF for specified pipelines based on quantitative data obtained from tests of this system. Conclusion: The new, automated system PodvodGazExpert has been developed for timely and qualitative determination of the physical conditions of underwater gas pipeline; The basis of the mathematical analysis of this new, automated system uses principal component analysis method; The process of determining the physical condition of an underwater gas pipeline with this new, automated system increases the MTBF by a factor of 8.18 above the existing system used today in the industry.
Resumo:
This study contributes a rigorous diagnostic assessment of state-of-the-art multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with 4 or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are provided for which modern MOEAs should serve as tools and benchmarks in the future water resources literature.
Resumo:
The Delaware River provides half of New York City's drinking water, is a habitat for wild trout, American shad and the federally endangered dwarf wedge mussel. It has suffered four 100‐year floods in the last seven years. A drought during the 1960s stands as a warning of the potential vulnerability of the New York City area to severe water shortages if a similar drought were to recur. The water releases from three New York City dams on the Delaware River's headwaters impact not only the reliability of the city’s water supply, but also the potential impact of floods, and the quality of the aquatic habitat in the upper river. The goal of this work is to influence the Delaware River water release policies (FFMP/OST) to further benefit river habitat and fisheries without increasing New York City's drought risk, or the flood risk to down basin residents. The Delaware water release policies are constrained by the dictates of two US Supreme Court Decrees (1931 and 1954) and the need for unanimity among four states: New York, New Jersey, Pennsylvania, and Delaware ‐‐ and New York City. Coordination of their activities and the operation under the existing decrees is provided by the Delaware River Basin Commission (DRBC). Questions such as the probability of the system approaching drought state based on the current FFMP plan and the severity of the 1960s drought are addressed using long record paleo‐reconstructions of flows. For this study, we developed reconstructed total annual flows (water year) for 3 reservoir inflows using regional tree rings going back upto 1754 (a total of 246 years). The reconstructed flows are used with a simple reservoir model to quantify droughts. We observe that the 1960s drought is by far the worst drought based on 246 years of simulations (since 1754).
Resumo:
Modern techniques for surgical treatment of midfacial and panfacial fractures in maxillofacial trauma lead to special problems for airway management. Usually, in perioperative management of panfacial fractures, the surgeon needs to control the dental occlusion and nasal pyramid assessment. For these reasons, oral and nasal endotracheal intubations are contraindicated for the management of panfacial fractures. Tracheotomy is considered by many as the preferred route for airway management in patients with severe maxillofacial fractures, but there are often perioperative and postoperative complications concerning this technique. The submental route for endotracheal intubation has been proposed as an alternative to tracheotomy in the surgical management of patients with panfacial fractures, besides it is accompanied by low morbidity. Thus, this paper aimed to describe the submental endotracheal intubation technique in a patient experiencing panfacial fracture. The subject was well treated using the submental endotracheal intubation to get good reconstruction of the fractures because the authors obtained free access of all facial fractures.
Resumo:
The Brazilian relief, predominantly composed by small mountains and plateaus, contributed to formation of rivers with high amount of falls. With exception to North-eastern Brazil, the climate of this country are rainy, which contributes to maintain water flows high. These elements are essential to a high hydroelectric potential, contributing to the choice of hydroelectric power plants as the main technology of electricity generation in Brazil. Though this is a renewable source, whose utilized resource is free, dams must to be established which generates a high environmental and social impact. The objective of this study is to evaluate the impact caused by these dams through the use of environmental indexes. These indexes are ratio formed by installed power with dam area of a hydro power plant, and ratio formed by firm power with this dam area. In this study, the greatest media values were found in South, Southeast, and Northeast regions respectively, and the smallest media values were found in North and Mid-West regions, respectively. The greatest encountered media indexes were also found in dams established in the 1950s. In the last six decades, the smallest indexes were registered by darns established in the 1980s. These indexes could be utilized as important instruments for environmental impact assessments, and could enable a dam to be established that depletes an ecosystem as less as possible.
Resumo:
Inappropriate treatments of frontal sinus fractures may lead to serious complications, such as mucopyocele, meningitis, and brain abscess. Assessment of nasofrontal duct injury is crucial, and nasofrontal duct injury requires sinus obliteration, which is often accomplished by autologous grafts such as fat, muscle, or bone. These avascular grafts have an increased risk of resorption and infection, as well as donor site morbidity. For these reasons, pericranial flap, which is vascular, should be used for frontal sinus obliteration. The pericranial flap presented with less morbidity procedure and has decreased infection rates, which justifies its use in frontal sinus obliteration. This paper aims to report a case of a comminuted frontal sinus fracture in a 29-year-old man who was successfully treated by frontal sinus obliteration, using pericranial local flap. The patient was followed up postoperatively for 16 months without infection. Copyright © 2013 by Mutaz B. Habal, MD.
Resumo:
Inappropriate treatments of frontal sinus fractures may lead to serious complications, such as mucopyocele, meningitis, and brain abscess. Assessment of nasofrontal duct injury is crucial, and nasofrontal duct injury requires sinus obliteration, which is often accomplished by autogenous grafts such as fat, muscle, or bone. These avascular grafts have an increased risk of resorption and infection and donor site morbidity. For these reasons, pericranial flap, which is vascular, should be used for frontal sinus obliteration. The pericranial flap presented with less morbidity procedure and has decreased infection rates, which justifies its use in frontal sinus obliteration. This study aimed to report a case of a comminuted frontal sinus fracture with a brief literature review, regarding the use of pericranial flap. The authors report a case of a 23-year-old male subject with a severely comminuted fracture of the anterior and posterior walls of the frontal sinus. The patient was successfully treated by cranialization with frontal sinus duct obliteration, using anterior pericranial flap. The patient was followed up for 16 months with no postoperative complication, such as infection. Pericranial flap is a good resource for frontal sinus duct obliteration because it is a durable and well-vascularized flap, which determines low rates of postoperative complications. Copyright © 2013 by Mutaz B. Habal, MD.
Resumo:
Includes bibliography
Resumo:
Includes bibliography.
Resumo:
This report was prepared at the request of the United Nations Economic Commission for Latin America and the Caribbean (ECLAC) with support from the Caribbean Catastrophe Risk Insurance Facility (CCRIF) to assess strategies for linking the ECLAC Damage and Loss Assessment (DaLA) Methology to the Post Disaster Needs Assessment (PDNA). Each metholodolgy was individually outlined and their use in the Caribbean context was explored in detail to set the framework or lens through which their linking would be viewed. Other methologies that are used within the recovery process were identified and outlined. A gap analysis was conducted on moving from the PDNA with a focus on initial rapid reponse to DaLA. DaLA training materials were reviewed to assess where improvements can be made to seamlessly move from one methology to the next. Additionally, both DaLA and PDNA reports were reviewed to identify specific areas of information which could serve as common data links, and note how this linkage could inform the overall disaster assessments in the region. This is in addition to noting any similarities or variance in the application of both methologies. Challenges to linking both methodologies were identified such as countries lacking well defined recovery frameworks and their ability to fund or finance recovery efforts, in addition to recurrent challenges in the Caribbean region such as inadequacy of baseline data, human resource and training, and identifying teams to conduct the data collection. Recommendations made in terms of the strategies to be employed for the successful linking of both the DaLA and PDNA Methodologies included: creating and maintaining a recovery framework and baseline data; creation of a minimum requirements list for the successful implementation of PDNA and DaLA implementation; and increasing political will in addition to identify a champion to push the subject.
Resumo:
Water security which is essential to life and livelihood, health and sanitation, is determined not only by the water resource, but also by the quality of water, the ability to store surplus from precipitation and runoff, as well as access to and affordability of supply. All of these measures have financial implications for national budgets. The water sector in the context of the assessment and discussion on the impact of climate change in this paper includes consideration of the existing as well as the projected available water resource and the demand in terms of: quantity and quality of surface and ground water, water supply infrastructure - collection, storage, treatment, distribution, and potential for adaptation. Wastewater management infrastructure is also considered a component of the water sector. Saint Vincent and the Grenadines has two distinct hydrological regimes: mainland St Vincent is one of the wetter islands of the eastern Caribbean whereas the Grenadines have a drier climate than St Vincent. Surface water is the primary source of water supply on St Vincent, whereas the Grenadines depend on man-made catchments, rainwater harvesting, wells, and desalination. The island state is considered already water stressed as marked seasonality in rainfall, inadequate supply infrastructure, and institutional capacity constrains water supply. Economic modelling approaches were implemented to estimate sectoral demand and supply between 2011 and 2050. Residential, tourism and domestic demand were analysed for the A2, B2 and BAU scenarios. In each of the three scenarios – A2, B2 and BAU Saint Vincent and the Grenadines will have a water gap represented by the difference between the two curves during the forecast period of 2011 and 2050. The amount of water required increases steadily between 2011 and 2050 implying an increasing demand on the country‘s resources as reflected by the fact that the water supply that is available cannot respond adequately to the demand. The Global Water Partnership in its 2005 policy brief suggested that the best way for countries to build the capacity to adapt to climate change will be to improve their ability to cope with today‘s climate variability (GWP, 2005). This suggestion is most applicable for St Vincent and the Grenadines, as the variability being experienced has already placed the island nation under water stress. Strategic priorities should therefore be adopted to increase water production, increase efficiency, strengthen the institutional framework, and decrease wastage. Cost benefit analysis was stymied by data availability, but the ―no-regrets approach‖ which intimates that adaptation measures will be beneficial to the land, people and economy of Saint Vincent and the Grenadines with or without climate change should be adopted.
Resumo:
Human health and environmental concerns are not usually considered at the same time. Tin-lead solders are still widely used in several countries, including Brazil, by manufacturers of electronic assemblies. One of the options to reduce or eliminate lead from the manufacturing environment is its replacement with lead-free alloys. This paper applies emergy synthesis and the DALY indicator (Disability Adjusted Life Years) to assess the impact of manufacturing soft solder using tin, lead and other metals on the environment and on human health. The results are presented together with the company's financial results and the results calculated from the Brazilian statistical value of life. The calculation of emergy per unit showed that more resources are used to produce one ton of lead-free solders than to produce one ton of tin-lead solders, with and without the use of consumer waste recovered through a reverse logistics system. The assessment of air emissions during solder production shows that the benefits of the lead-free solution are limited to the stages of manufacturing and assembling. The tin-lead solder appears as the best option in terms of resource use efficiency and with respect to emissions into the atmosphere when the mining stage is included. A discussion on the influence of the system's boundaries on the decision-making process for materials substitution is presented. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Wing pigmentation is a trait that predicts the outcome of male contests in some damselflies. Thus, it is reasonable to suppose that males would have the ability to assess wing pigmentation and adjust investment in a fight according to the costs that the rival may potentially impose. Males of the damselfly Mnesarete pudica exhibit red-coloured wings and complex courtship behaviour and engage in striking male– male fights. In this study, we investigated male assessment behaviour during aerial contests. Theory suggests that the relationship between male resource-holding potential (RHP) and contest duration describes the kind of assessment adopted by males: self-assessment, opponent-only assessment or mutual assessment. A recent theory also suggests that weak and strong males exhibit variations in the assessment strategies adopted. We estimated male RHP through male body size and wing colouration (i.e. pigmentation, wing reflectance spectra and transmission spectra) and studied the relationship between male RHP and contest duration from videodocumented behavioural observations of naturally occurring individual contests in the field. The results showed that males with more opaque wings and larger red spots were more likely to win contests. The relationships between RHP and contest durations partly supported the self-assessment and the mutual assessment models. We then experimentally augmented the pigmented area of the wings, in order to evaluate whether strong and weak males assess rivals’ RHP through wing pigmentation. Our experimental manipulation, however, clearly demonstrated that strong males assess rivals’ wing pigmentation. We finally suggest that there is a variation in the assessment strategy adopted by males
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)