974 resultados para Relational data
Resumo:
ANDS Guides http://ands.org.au/guides/index.html These guides provide information about ANDS services and some fundamental issues in data-intensive research and research data management. These are not rules, prescriptions or proscriptions. They are guidelines and checklists to inform and broaden the range of possibilities for researchers, data managers, and research organisations.
Resumo:
This guide is relevant to anyone who owns copyright in data compilations or databases and wants to share their data openly, or to anyone who wants to use data under an open content licence. ANDS Guides are available at http://ands.org.au/guides/index.html.
Resumo:
As a consequence of the increased incidence of collaborative arrangements between firms, the competitive environment characterising many industries has undergone profound change. It is suggested that rivalry is not necessarily enacted by individual firms according to the traditional mechanisms of direct confrontation in factor and product markets, but rather as collaborative orchestration between a number of participants or network members. Strategic networks are recognised as sets of firms within an industry that exhibit denser strategic linkages among themselves than other firms within the same industry. Based on this, strategic networks are determined according to evidence of strategic alliances between firms comprising the industry. As a result, a single strategic network represents a group of firms closely linked according to collaborative ties. Arguably, the collective outcome of these strategic relationships engineered between firms suggest that the collaborative benefits attributed to interorganisational relationships require closer examination in respect to their propensity to influence rivalry in intraindustry environments. Derived in large from the social sciences, network theory allows for the micro and macro examination of the opportunities and constraints inherent in the structure of relationships in strategic networks, establishing a relational approach upon which the conduct and performance of firms can be more fully understood. Research to date has yet to empirically investigate the relationship between strategic networks and rivalry. The limited research that has been completed utilising a network rationale to investigate competitive patterns in contemporary industry environments has been characterised by a failure to directly measure rivalry. Further, this prior research has typically embedded investigation in industry settings dominated by technological or regulatory imperatives, such as the microprocessor and airline industries. These industries, due to the presence of such imperatives, are arguably more inclined to support the realisation of network rivalry, through subscription to prescribed technological standards (eg., microprocessor industry) or by being bound by regulatory constraints dictating operation within particular market segments (airline industry). In order to counter these weaknesses, the proposition guiding research - Are patterns of rivalry predicted by strategic network membership? – is embedded in the United States Light Vehicles Industry, an industry not dominated by technological or regulatory imperatives. Further, rivalry is directly measured and utilised in research, thus distinguishing this investigation from prior research efforts. The timeframe of investigation is 1993 – 1999, with all research data derived from secondary sources. Strategic networks were defined within the United States Light Vehicles Industry based on evidence of horizontal strategic relationships between firms comprising the industry. The measure of rivalry used to directly ascertain the competitive patterns of industry participants was derived from the traditional Herfindahl Index, modified to account for patterns of rivalry observed at the market segment level. Statistical analyses of the strategic network and rivalry constructs found little evidence to support the contention of network rivalry; indeed, greater levels of rivalry were observed between firms comprising the same strategic network than between firms participating in opposing network structures. Based on these results, patterns of rivalry evidenced in the United States Light Vehicle Industry over the period 1993 – 1999 were not found to be predicted by strategic network membership. The findings generated by this research are in contrast to current theorising in the strategic network – rivalry realm. In this respect, these findings are surprising. The relevance of industry type, in conjunction with prevailing network methodology, provides the basis upon which these findings are contemplated. Overall, this study raises some important questions in relation to the relevancy of the network rivalry rationale, establishing a fruitful avenue for further research.
Resumo:
High-speed videokeratoscopy is an emerging technique that enables study of the corneal surface and tear-film dynamics. Unlike its static predecessor, this new technique results in a very large amount of digital data for which storage needs become significant. We aimed to design a compression technique that would use mathematical functions to parsimoniously fit corneal surface data with a minimum number of coefficients. Since the Zernike polynomial functions that have been traditionally used for modeling corneal surfaces may not necessarily correctly represent given corneal surface data in terms of its optical performance, we introduced the concept of Zernike polynomial-based rational functions. Modeling optimality criteria were employed in terms of both the rms surface error as well as the point spread function cross-correlation. The parameters of approximations were estimated using a nonlinear least-squares procedure based on the Levenberg-Marquardt algorithm. A large number of retrospective videokeratoscopic measurements were used to evaluate the performance of the proposed rational-function-based modeling approach. The results indicate that the rational functions almost always outperform the traditional Zernike polynomial approximations with the same number of coefficients.