951 resultados para Red Cross and Red Crescent
Resumo:
Red light running (RLR) is a problem in the US that has resulted in 165,000 injuries and 907 fatalities annually. In Iowa, RLR-related crashes make up 24.5 percent of all crashes and account for 31.7 percent of fatal and major injury crashes at signalized intersections. RLR crashes are a safety concern due to the increased likelihood of injury compared to other types of crashes. One tool used to combat red light running is automated enforcement in the form of RLR cameras. Automated enforcement, while effective, is often controversial. Cedar Rapids, Iowa installed RLR and speeding cameras at seven intersections across the city. The intersections were chosen based on crash rates and whether cameras could feasibly be placed at the intersection approaches. The cameras were placed starting in February 2010 with the last one becoming operational in December 2010. An analysis of the effect of the cameras on safety at these intersections was determined prudent in helping to justify the installation and effectiveness of the cameras. The objective of this research was to assess the safety effectiveness of the RLR program that has been implemented in Cedar Rapids. This was accomplished by analyzing data to determine changes in the following metrics: Reductions in red light violation rates based on overall changes, time of day changes, and changes by lane Effectiveness of the cameras over time Time in which those running the red light enter the intersection Changes in the average headway between vehicles entering the intersection
Resumo:
Following high winds on January 24, 2006, at least five people claimed to have seen or felt the superstructure of the Saylorville Reservoir Bridge in central Iowa moving both vertically and laterally. Since that time, the Iowa Department of Transportation (DOT) contracted with the Bridge Engineering Center at Iowa State University to design and install a monitoring system capable of providing notification of the occurrence of subsequent high winds. Although measures were put into place following the 2006 event at the Saylorville Reservoir Bridge, knowledge of the performance of this bridge during high wind events was incomplete. Therefore, the Saylorville Reservoir Bridge was outfitted with an information management system to investigate the structural performance of the structure and the potential for safety risks. In subsequent years, given the similarities between the Saylorville and Red Rock Reservoir bridges, a similar system was added to the Red Rock Reservoir Bridge southeast of Des Moines. The monitoring system developed and installed on these two bridges was designed to monitor the wind speed and direction at the bridge and, via a cellular modem, send a text message to Iowa DOT staff when wind speeds meet a predetermined threshold. The original intent was that, once the text message is received, the bridge entrances would be closed until wind speeds diminish to safe levels.
Resumo:
Selostus: Ensimmäisen sadon korjuuaika vaikuttaa timotein ja puna-apilan seosnurmen satoon ja rehuarvoon
Resumo:
Selostus: Puna-apilan pysyvyys apila-heinänurmessa sekä seosnurmen satoisuus ja laadun muutokset erilaisissa kasvuoloissa
Resumo:
The objective of this study was to assess the development response of cultivated rice and red rice to different increases in minimum and maximum daily air temperatures, in Santa Maria, Rio Grande do Sul State, Brazil. One hundred years climate scenarios of temperatures 0, +1, +2, +3, +4, and +5ºC, with symmetric and asymmetric increases in minimum and maximum daily air temperatures were created, using the LARS-WG Weather Generator, and a 1969-2003 database. Nine cultivated rice genotypes (IRGA 421, IRGA 416, IRGA 417, IRGA 420, BRS 7 TAIM, BR-IRGA 409, EPAGRI 109, EEA 406 and a hybrid), and two red rice biotypes (awned black hull-ABHRR, and awned yellow hull-AYHRR) were used. The dates of panicle differentiation (R1), anthesis (R4), and all grains with brown hulls (R9) were estimated with a nonlinear simulation model. Overall, the duration of the emergence-R1 phase decreased, whereas the duration of the R1-R4 and R4-R9 phases most often increased, as temperature increased in the climate change scenarios. The simulated rice development response to elevated temperature was not the same, when the increase in minimum and maximum temperature was symmetric or asymmetric.
Resumo:
Abstract
Resumo:
This research study, a cooperative effort between the Iowa Department of Transportation and the Center for Transportation Research and Education at Iowa State University, reviewed red light running reduction studies and programs nationwide, examined the scope of this phenomenon in Iowa, and proposed countermeasures to address significant violation problems.
Resumo:
BACKGROUND: Red blood cell-derived microparticles (RMPs) are small phospholipid vesicles shed from RBCs in blood units, where they accumulate during storage. Because microparticles are bioactive, it could be suggested that RMPs are mediators of posttransfusion complications or, on the contrary, constitute a potential hemostatic agent. STUDY DESIGN AND METHODS: This study was performed to establish the impact on coagulation of RMPs isolated from blood units. Using calibrated automated thrombography, we investigated whether RMPs affect thrombin generation (TG) in plasma. RESULTS: We found that RMPs were not only able to increase TG in plasma in the presence of a low exogenous tissue factor (TF) concentration, but also to initiate TG in plasma in absence of exogenous TF. TG induced by RMPs in the absence of exogenous TF was neither affected by the presence of blocking anti-TF nor by the absence of Factor (F)VII. It was significantly reduced in plasma deficient in FVIII or F IX and abolished in FII-, FV-, FX-, or FXI-deficient plasma. TG was also totally abolished when anti-XI 01A6 was added in the sample. Finally, neither Western blotting, flow cytometry, nor immunogold labeling allowed the detection of traces of TF antigen. In addition, RMPs did not comprise polyphosphate, an important modulator of coagulation. CONCLUSIONS: Taken together, our data show that RMPs have FXI-dependent procoagulant properties and are able to initiate and propagate TG. The anionic surface of RMPs might be the site of FXI-mediated TG amplification and intrinsic tenase and prothrombinase complex assembly.
Resumo:
Evolution of the Red Sea/Gulf of Suez and the Central Atlantic rift systems shows that an initial, transtensive rifting phase, affecting a broad area around the future zone of crustal separation, was followed by a pre-oceanic rifting phase during which extensional strain was concentrated on the axial rift zone. This caused lateral graben systems to become inactive and they evolved into rift-rim basins. The transtensive phase of diffuse crustal extension is recognized in many intra-continental rifts. If controlling stress systems relax, these rifts abort and develop into palaeorifts. If controlling stress systems persist, transtensive rift systems can enter the pre-oceanic rifting stage, during which the rift zone narrows and becomes asymmetric as a consequence of simple-shear deformation at shallow crustal levels and pure shear deformation at lower crustal and mantle-lithospheric levels. Preceding crustal separation, extensional denudation of the lithospheric mantle is possible. Progressive lithospheric attenuation entails updoming of the asthenosphere and thermal doming of the rift shoulders. Their uplift provides a major clastic source for the rift basins and the lateral rift-rim basins. Their stratigraphic record provides a sensitive tool for dating the rift shoulder uplift. Asymmetric rifting leads to the formation of asymmetric continental margins, corresponding in a simple-shear model to an upper plate and a conjugate lower plate margin, as seen in the Central Atlantic passive margins of the United States and Morocco. This rifting model can be successfully applied to the analysis of the Alpine Tethys palaeo-margins (such as Rif and the Western Alps).
Resumo:
In this study, we evaluated the repeatability of pupil responses to colored light stimuli in healthy subjects using a prototype chromatic pupillometer. One eye of 10 healthy subjects was tested twice in the same day using monochromatic light exposure at two selected wavelengths (660 and 470 nm, intensity 300 cd/m(2)) presented continuously for 20 s. Pupil responses were recorded in real-time before, during, and after light exposure. Maximal contraction amplitude and sustained contraction amplitude were calculated. In addition, we quantified the summed pupil response during continuous light stimulation as the total area between a reference line representing baseline pupil size and the line representing actual pupil size over 20 s (area under the curve). There was no significant difference in the repeated measure compared to the first test for any of the pupil response parameters. In conclusion, we have developed a novel prototype of color pupillometer which demonstrates good repeatability in evoking and recording the pupillary response to a bright blue and red light stimulus.
Resumo:
This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6) processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT) defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second.