955 resultados para Real-time Control of Flood Events
Resumo:
Two different fuzzy approaches to voltage control in electric power distribution systems are introduced in this paper. The real-time controller in each case would act on power transformers equipped with under-load tap changers. Learning systems are employed to turn the voltage-control relays into adaptive devices. The scope of this study has been limited to the power distribution substation, and the voltage measurements and control actions are carried out on the secondary bus. The capacity of fuzzy systems to handle approximate data, together with their unique ability to interpret qualitative information, make it possible to design voltage-control strategies that satisfy the requirements of the Brazilian regulatory bodies and the real concerns of the electric power distribution companies. Fuzzy control systems based on these two strategies have been implemented and the test results were highly satisfactory.
Resumo:
This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Objective: Micro RNA (miRNA) is a class of small noncoding RNA that plays a major role in the regulation of gene expression, which has been related to cancer behavior. The possibility of analyzing miRNA from the archives of pathology laboratories is exciting, as it allows for large retrospective studies. Formalin is the most common fixative used in the surgical pathology routine, and its promotion of nucleic acid degradation is well known. Our aim is to compare miRNA profiles from formalin-fixed paraffin embedded (FFPE) tissues with fresh-frozen prostate cancer tissues. Methods: The expression of 14 miRNAs was determined by quantitative real time polymerase chain reaction (qRT-PCR) in 5 paired fresh-frozen and FFPE tissues, which were representative of prostate carcinoma. Results: There was a very good correlation of the miRNA expression of miR-let7c and miR-32 between the fresh-frozen and FFPE tissues, with Pearson`s correlation coefficients of 0.927 (P = 0.023) and 0.960 (P = 0.010), respectively. For the remaining miRNAs, the correlation was good with Spearman correlation coefficient of 0.638 (P < 0.001). Conclusion: Analysis of miRNAs from routinely processed and stored FFPE prostate tissue is feasible for some miRNAs using qRT-PCR. Further studies should be conducted to confirm the reliability of using stock tissues for miRNA expression determination. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Neospora caninum is one of the main causes of abortion and natimortality in cattle. Host immune defense is capable to inhibit tachyzoite activity during acute infection, but there is no action against bradyzoites in tissue cysts. Activation and modulation of this response is controlled by cell mediators. The real-time RT-PCR technique was employed to detect some of those mediators during N. caninum infection. Holstein and Nelore calves intramuscularly infected with tachyzoites and uninfected controls were slaughtered at the sixth day post-infection and popliteal lymph node, liver and brain cortex samples were analyzed. Real-time RT-PCR detected gene expression in all tissues. No significant variation of GAPDH gene expression was detected among groups, its amplification efficiency was similar to the other genes tested and it was used as the endogenous control for the analysis. Comparisons between infected and uninfected groups allowed the relative gene expression quantification. IFN-gamma and TNF-alpha genes showed increased expression in some samples. iNOS and TGF-beta 1 genes had some non-significant variations and IL-4 and IL-10 stayed pratically inaltered.
Resumo:
Recent changes in power systems mainly due to the substantial increase of distributed generation and to the operation in competitive environments has created new challenges to operation and planning. In this context, Virtual Power Players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Demand response market implementation has been done in recent years. Several implementation models have been considered. An important characteristic of a demand response program is the trigger criterion. A program for which the event trigger depends on the Locational Marginal Price (LMP) used by the New England Independent System operator (ISO-NE) inspired the present paper. This paper proposes a methodology to support VPP demand response programs management. The proposed method has been computationally implemented and its application is illustrated using a 32 bus network with intensive use of distributed generation. Results concerning the evaluation of the impact of using demand response events are also presented.
Resumo:
In this paper, we analyse the ability of P-NET [1] fieldbus to cope with the timing requirements of a Distributed Computer Control System (DCCS), where messages associated to discrete events should be made available within a maximum bound time. The main objective of this work is to analyse how the network access and queueing delays, imposed by P-NET’s virtual token Medium Access Control (MAC) mechanism, affect the realtime behaviour of the supported DCCS.
Resumo:
Moving towards autonomous operation and management of increasingly complex open distributed real-time systems poses very significant challenges. This is particularly true when reaction to events must be done in a timely and predictable manner while guaranteeing Quality of Service (QoS) constraints imposed by users, the environment, or applications. In these scenarios, the system should be able to maintain a global feasible QoS level while allowing individual nodes to autonomously adapt under different constraints of resource availability and input quality. This paper shows how decentralised coordination of a group of autonomous interdependent nodes can emerge with little communication, based on the robust self-organising principles of feedback. Positive feedback is used to reinforce the selection of the new desired global service solution, while negative feedback discourages nodes to act in a greedy fashion as this adversely impacts on the provided service levels at neighbouring nodes. The proposed protocol is general enough to be used in a wide range of scenarios characterised by a high degree of openness and dynamism where coordination tasks need to be time dependent. As the reported results demonstrate, it requires less messages to be exchanged and it is faster to achieve a globally acceptable near-optimal solution than other available approaches.
Resumo:
Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system's performance. The paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The results show that the proposed heuristics achieve a reasonably higher system's availability than static offline decisions when lower replication ratios are imposed due to resource or cost limitations. The paper introduces a novel approach to coordinate the activation of passive replicas in interdependent distributed environments. The proposed distributed coordination model reduces the complexity of the needed interactions among nodes and is faster to converge to a globally acceptable solution than a traditional centralised approach.
Resumo:
Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system’s performance. This paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The activation of passive replicas is coordinated through a fast convergence protocol that reduces the complexity of the needed interactions among nodes until a new collective global service solution is determined.
Resumo:
INTRODUCTION: Laboratory-based surveillance is an important component in the control of vancomycin resistant enterococci (VRE). METHODS: The study aimed to evaluate real-time polymerase chain reaction (RT-PCR) (genes vanA-vanB) for VRE detection on 115 swabs from patients included in a surveillance program. RESULTS: Sensitivity of RT-PCR was similar to primary culture (75% and 79.5%, respectively) when compared to broth enriched culture, whereas specificity was 83.1%. CONCLUSIONS: RT-PCR provides same day results, however it showed low sensitivity for VRE detection.
Resumo:
Patient blood pressure is an important vital signal to the physicians take a decision and to better understand the patient condition. In Intensive Care Units is possible monitoring the blood pressure due the fact of the patient being in continuous monitoring through bedside monitors and the use of sensors. The intensivist only have access to vital signs values when they look to the monitor or consult the values hourly collected. Most important is the sequence of the values collected, i.e., a set of highest or lowest values can signify a critical event and bring future complications to a patient as is Hypotension or Hypertension. This complications can leverage a set of dangerous diseases and side-effects. The main goal of this work is to predict the probability of a patient has a blood pressure critical event in the next hours by combining a set of patient data collected in real-time and using Data Mining classification techniques. As output the models indicate the probability (%) of a patient has a Blood Pressure Critical Event in the next hour. The achieved results showed to be very promising, presenting sensitivity around of 95%.
Resumo:
The purpose of this study was to evaluate the determinism of the AS-lnterface network and the 3 main families of control systems, which may use it, namely PLC, PC and RTOS. During the course of this study the PROFIBUS and Ethernet field level networks were also considered in order to ensure that they would not introduce unacceptable latencies into the overall control system. This research demonstrated that an incorrectly configured Ethernet network introduces unacceptable variable duration latencies into the control system, thus care must be exercised if the determinism of a control system is not to be compromised. This study introduces a new concept of using statistics and process capability metrics in the form of CPk values, to specify how suitable a control system is for a given control task. The PLC systems, which were tested, demonstrated extremely deterministic responses, but when a large number of iterations were introduced in the user program, the mean control system latency was much too great for an AS-I network. Thus the PLC was found to be unsuitable for an AS-I network if a large, complex user program Is required. The PC systems, which were tested were non-deterministic and had latencies of variable duration. These latencies became extremely exaggerated when a graphing ActiveX was included in the control application. These PC systems also exhibited a non-normal frequency distribution of control system latencies, and as such are unsuitable for implementation with an AS-I network. The RTOS system, which was tested, overcame the problems identified with the PLC systems and produced an extremely deterministic response, even when a large number of iterations were introduced in the user program. The RTOS system, which was tested, is capable of providing a suitable deterministic control system response, even when an extremely large, complex user program is required.
Resumo:
BACKGROUND: The value of adenovirus plasma DNA detection as an indicator for adenovirus disease is unknown in the context of T cell-replete hematopoietic cell transplantation, of which adenovirus disease is an uncommon but serious complication. METHODS: Three groups of 62 T cell-replete hematopoietic cell transplant recipients were selected and tested for adenovirus in plasma by polymerase chain reaction. RESULTS: Adenovirus was detected in 21 (87.5%) of 24 patients with proven adenovirus disease (group 1), in 4 (21%) of 19 patients who shed adenovirus (group 2), and in 1 (10.5%) of 19 uninfected control patients. The maximum viral load was significantly higher in group 1 (median maximum viral load, 6.3x10(6) copies/mL; range, 0 to 1.0x10(9) copies/mL) than in group 2 (median maximum viral load, 0 copies/mL; range, 0 to 1.7x10(8) copies/mL; P<.001) and in group 3 (median maximum viral load, 0 copies/mL; range 0-40 copies/mL; P<.001). All patients in group 2 who developed adenoviremia had symptoms compatible with adenovirus disease (i.e., possible disease). A minimal plasma viral load of 10(3) copies/mL was detected in all patients with proven or possible disease. Adenoviremia was detectable at a median of 19.5 days (range, 8-48 days) and 24 days (range, 9-41 days) before death for patients with proven and possible adenovirus disease, respectively. CONCLUSION: Sustained or high-level adenoviremia appears to be a specific and sensitive indicator of adenovirus disease after T cell-replete hematopoietic cell transplantation. In the context of low prevalence of adenovirus disease, the use of polymerase chain reaction of plasma specimens to detect virus might be a valuable tool to identify and treat patients at risk for viral invasive disease.
Resumo:
Objective: Aspergillus species are the main pathogens causing invasive fungal infections but the prevalence of other mould species is rising. Resistance to antifungals among these new emerging pathogens presents a challenge for managing of infections. Conventional susceptibility testing of non-Aspergillus species is laborious and often difficult to interpret. We evaluated a new method for real-time susceptibility testing of moulds based on their of growth-related heat production.Methods: Laboratory and clinical strains of Mucor spp. (n = 4), Scedoporium spp. (n = 4) and Fusarium spp. (n = 5) were used. Conventional MIC was determined by microbroth dilution. Isothermal microcalorimetry was performed at 37 C using Sabouraud dextrose broth (SDB) inoculated with 104 spores/ml (determined by microscopical enumeration). SDB without antifungals was used for evaluation of growth characteristics. Detection time was defined as heat flow exceeding 10 lW. For susceptibility testing serial dilutions of amphotericin B, voriconazole, posaconazole and caspofungin were used. The minimal heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration, inhbiting 50% of the heat produced by the growth control at 48 h or at 24 h for Mucor spp. Susceptibility tests were performed in duplicate.Results: Tested mould genera had distinctive heat flow profiles with a median detection time (range) of 3.4 h (1.9-4.1 h) for Mucor spp, 11.0 h (7.1-13.7 h) for Fusarium spp and 29.3 h (27.4-33.0 h) for Scedosporium spp. Graph shows heat flow (in duplicate) of one representative strain from each genus (dashed line marks detection limit). Species belonging to the same genus showed similar heat production profiles. Table shows MHIC and MIC ranges for tested moulds and antifungals.Conclusions: Microcalorimetry allowed rapid detection of growth of slow-growing species, such as Fusarium spp. and Scedosporium spp. Moreover, microcalorimetry offers a new approach for antifungal susceptibility testing of moulds, correlating with conventional MIC values. Interpretation of calorimetric susceptibility data is easy and real-time data on the effect of different antifungals on the growth of the moulds is additionally obtained. This method may be used for investigation of different mechanisms of action of antifungals, new substances and drug-drug combinations.
Resumo:
Mycobacterium tuberculosis is the bacterium that causes tuberculosis (TB), a leading cause of death from infectious disease worldwide. Rapid diagnosis of resistant strains is important for the control of TB. Real-time polymerase chain reaction (RT-PCR) assays may detect all of the mutations that occur in the M. tuberculosis 81-bp core region of the rpoB gene, which is responsible for resistance to rifampin (RIF) and codon 315 of the katG gene and the inhA ribosomal binding site, which are responsible for isoniazid (INH). The goal of this study was to assess the performance of RT-PCR compared to traditional culture-based methods for determining the drug susceptibility of M. tuberculosis. BACTEC TM MGIT TM 960 was used as the gold standard method for phenotypic drug susceptibility testing. Susceptibilities to INH and RIF were also determined by genotyping of katG, inhA and rpoB genes. RT-PCR based on molecular beacons probes was used to detect specific point mutations associated with resistance. The sensitivities of RT-PCR in detecting INH resistance using katG and inhA targets individually were 55% and 25%, respectively and 73% when combined. The sensitivity of the RT-PCR assay in detecting RIF resistance was 99%. The median time to complete the RT-PCR assay was three-four hours. The specificities for tests were both 100%. Our results confirm that RT-PCR can detect INH and RIF resistance in less than four hours with high sensitivity.