944 resultados para Radioisotope scanning.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superlattice structures and rippling fringes were imaged on two separate pieces of graphite (HOPG) by scanning tunnelling microscopy (STM). We observed the corrugation conservation phenomenon on one of the superlattice structures where an overlayer does not attenuate the corrugation amplitude of the superlattice. Such a phenomenon may illustrate an implication that nanoscale defects a few layers underneath the surface may propagate through many layers without decay and form the superlattice structure on the topmost surface. Some rippling fringes with periodicities of 20 nm and 30 nm and corrugations of 0.1 nm and 0.15nm were observed in the superlattice area and in nearby regions. Such fringes are believed to be due to physical buckling of the surface. The stress required to generate such structures is estimated, and a possible cause is discussed. An equation relating the attenuation factor to the number of overlayers is proposed. © 2005 The Japan Society of Applied Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models for simulating Scanning Probe Microscopy (SPM) may serve as a reference point for validating experimental data and practice. Generally, simulations use a microscopic model of the sample-probe interaction based on a first-principles approach, or a geometric model of macroscopic distortions due to the probe geometry. Examples of the latter include use of neural networks, the Legendre Transform, and dilation/erosion transforms from mathematical morphology. Dilation and the Legendre Transform fall within a general family of functional transforms, which distort a function by imposing a convex solution.In earlier work, the authors proposed a generalized approach to modeling SPM using a hidden Markov model, wherein both the sample-probe interaction and probe geometry may be taken into account. We present a discussion of the hidden Markov model and its relationship to these convex functional transforms for simulating and restoring SPM images.©2009 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid thermal annealing of arsenic and boron difluoride implants, such as those used for source/drain regions in CMOS, has been carried out using a scanning electron beam annealer, as part of a study of transient diffusion effects. Three types of e-beam anneal have been performed, with peak temperatures in the range 900 -1200 degree C; the normal isothermal e-beam anneals, together with sub-second fast anneals and 'dual-pulse' anneals, in which the sample undergoes an isothermal pre-anneal followed by rapid heating to the required anneal temperature is less than 0. 5s. The diffusion occuring during these anneal cycles has been modelled using SPS-1D, an implant and diffusion modelling program developed by one of the authors. This has been modified to incorporate simulated temperature vs. time cycles for the anneals. Results are presented applying the usual equilibrium clustering model, a transient point-defect enhancement to the diffusivity proposed recently by Fair and a new dynamic clustering model for arsenic. Good agreement with SIMS measurements is obtained using the dynamic clustering model, without recourse to a transient defect model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an in-depth study of the myriad atomically resolved patterns observed on graphite using the scanning tunnelling microscope (STM) over the past three decades. Through the use of highly resolved atomic resolution images, we demonstrate how the interactions between the different graphene layers comprising graphite affect the local surface atomic charge density and its resulting symmetry orientation, with particular emphasis on interactions that are thermodynamically unstable. Moreover, the interlayer graphene coupling is controlled experimentally by varying the tip-surface interaction, leading to associated changes in the atomic patterns. The images are corroborated by first-principles calculations, further validating our claim that surface graphene displacement, coming both from lateral and vertical displacement of the top graphene layer, forms the basis of the rich variety of atomic patterns observed in STM experiments on graphite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The probe tip is pivotal in determining the resolution and nature of features observed in the Scanning Tunnelling Microscope (STM). We have augmented a conventional Pt/Ir metallic tip with a hydrothermally grown ZnO nanowire (NW). Atomic resolution imaging of graphite is attained. Current-voltage (IV) characteristics demonstrate an asymmetry stemming from the unintentional n-type doping of the ZnO NW, whereas the expected Schottky barrier at the ZnO-Pt/Ir interface is shown to have negligible effect. Moreover the photoconductivity of the system is investigated, paving the way towards a photodetector capable of atomic resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Only very few constructed facilities today have a complete record of as-built information. Despite the growing use of Building Information Modelling and the improvement in as-built records, several more years will be required before guidelines that require as-built data modelling will be implemented for the majority of constructed facilities, and this will still not address the stock of existing buildings. A technical solution for scanning buildings and compiling Building Information Models is needed. However, this is a multidisciplinary problem, requiring expertise in scanning, computer vision and videogrammetry, machine learning, and parametric object modelling. This paper outlines the technical approach proposed by a consortium of researchers that has gathered to tackle the ambitious goal of automating as-built modelling as far as possible. The top level framework of the proposed solution is presented, and each process, input and output is explained, along with the steps needed to validate them. Preliminary experiments on the earlier stages (i.e. processes) of the framework proposed are conducted and results are shown; the work toward implementation of the remainder is ongoing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous structures are used in orthopaedics to promote biological fixation between metal implant and host bone. In order to achieve rapid and high volumes of bone ingrowth the structures must be manufactured from a biocompatible material and possess high interconnected porosities, pore sizes between 100 and 700 microm and mechanical strengths that withstand the anticipated biomechanical loads. The challenge is to develop a manufacturing process that can cost effectively produce structures that meet these requirements. The research presented in this paper describes the development of a 'beam overlap' technique for manufacturing porous structures in commercially pure titanium using the Selective Laser Melting (SLM) rapid manufacturing technique. A candidate bone ingrowth structure (71% porosity, 440 microm mean pore diameter and 70 MPa compression strength) was produced and used to manufacture a final shape orthopaedic component. These results suggest that SLM beam overlap is a promising technique for manufacturing final shape functional bone ingrowth materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyloid fibres displaying cytochrome b562 were probed using scanning tunnelling microscopy (STM) in vacuo. The cytochromes are electron transfer proteins containing a haem cofactor and could, in principle, mediate electron transfer between the tip and the gold substrate. If the core fibres were insulating and electron transfer within the 3D haem network was detected, then the electron transport properties of the fibre could be controlled by genetic engineering. Three kinds of STM images were obtained. At a low bias (<1.5 V) the fibres appeared as regions of low conductivity with no evidence of cytochrome mediated electron transfer. At a high bias, stable peaks in tunnelling current were observed for all three fibre species containing haem and one species of fibre that did not contain haem. In images of this kind, some of the current peaks were collinear and spaced around 10 nm apart over ranges longer than 100 nm, but background monomers complicate interpretation. Images of the third kind were rare (1 in 150 fibres); in these, fully conducting structures with the approximate dimensions of fibres were observed, suggesting the possibility of an intermittent conduction mechanism, for which a precedent exists in DNA. To test the conductivity, some fibres were immobilized with sputtered gold, and no evidence of conduction between the grains of gold was seen. In control experiments, a variation of monomeric cytochrome b562 was not detected by STM, which was attributed to low adhesion, whereas a monomeric multi-haem protein, GSU1996, was readily imaged. We conclude that the fibre superstructure may be intermittently conducting, that the cytochromes have been seen within the fibres and that they are too far apart for detectable current flow between sites to occur. We predict that GSU1996, being 10 nm long, is more likely to mediate successful electron transfer along the fibre as well as being more readily detectable when displayed from amyloid.