930 resultados para RADIATION SCATTERING ANALYSIS
Resumo:
In meteorology, observations and forecasts of a wide range of phenomena for example, snow, clouds, hail, fog, and tornados can be categorical, that is, they can only have discrete values (e.g., "snow" and "no snow"). Concentrating on satellite-based snow and cloud analyses, this thesis explores methods that have been developed for evaluation of categorical products and analyses. Different algorithms for satellite products generate different results; sometimes the differences are subtle, sometimes all too visible. In addition to differences between algorithms, the satellite products are influenced by physical processes and conditions, such as diurnal and seasonal variation in solar radiation, topography, and land use. The analysis of satellite-based snow cover analyses from NOAA, NASA, and EUMETSAT, and snow analyses for numerical weather prediction models from FMI and ECMWF was complicated by the fact that we did not have the true knowledge of snow extent, and we were forced simply to measure the agreement between different products. The Sammon mapping, a multidimensional scaling method, was then used to visualize the differences between different products. The trustworthiness of the results for cloud analyses [EUMETSAT Meteorological Products Extraction Facility cloud mask (MPEF), together with the Nowcasting Satellite Application Facility (SAFNWC) cloud masks provided by Météo-France (SAFNWC/MSG) and the Swedish Meteorological and Hydrological Institute (SAFNWC/PPS)] compared with ceilometers of the Helsinki Testbed was estimated by constructing confidence intervals (CIs). Bootstrapping, a statistical resampling method, was used to construct CIs, especially in the presence of spatial and temporal correlation. The reference data for validation are constantly in short supply. In general, the needs of a particular project drive the requirements for evaluation, for example, for the accuracy and the timeliness of the particular data and methods. In this vein, we discuss tentatively how data provided by general public, e.g., photos shared on the Internet photo-sharing service Flickr, can be used as a new source for validation. Results show that they are of reasonable quality and their use for case studies can be warmly recommended. Last, the use of cluster analysis on meteorological in-situ measurements was explored. The Autoclass algorithm was used to construct compact representations of synoptic conditions of fog at Finnish airports.
Resumo:
In remote-sensing studies, particles that are comparable to the wavelength exhibit characteristic features in electromagnetic scattering, especially in the degree of linear polarization. These features vary with the physical properties of the particles, such as shape, size, refractive index, and orientation. In the thesis, the direct problem of computing the unknown scattered quantities using the known properties of the particles and the incident radiation is solved at both optical and radar spectral regions in a unique way. The internal electromagnetic fields of wavelength-scale particles are analyzed by using both novel and established methods to show how the internal fields are related to the scattered fields in the far zone. This is achieved by using the tools and methods that were developed specifically to reveal the internal field structure of particles and to study the mechanisms that relate the structure to the scattering characteristics of those particles. It is shown that, for spherical particles, the internal field is a combination of a forward propagating wave with the apparent wavelength determined by the refractive index of the particle, and a standing wave pattern with the apparent wavelength the same as for the incident wave. Due to the surface curvature and dielectric nature of the particle, the incident wave front undergoes a phase shift, and the resulting internal wave is focused mostly at the forward part of the particle similar to an optical lens. This focusing is also seen for irregular particles. It is concluded that, for both spherical and nonspherical particles, the interference at the far field between the partial waves that originate from these concentrated areas in the particle interior, is responsible for the specific polarization features that are common for wavelength-scale particles, such as negative values and local extrema in the degree of linear polarization, asymmetry of the phase function, and enhancement of intensity near the backscattering direction. The papers presented in this thesis solve the direct problem for particles with both simple and irregular shapes to demonstrate that these interference mechanisms are common for all dielectric wavelength-scale particles. Furthermore, it is shown that these mechanisms can be applied to both regolith particles in the optical wavelengths and hydrometeors at microwave frequencies. An advantage from this kind of study is that it does not matter whether the observation is active (e.g., polarimetric radar) or passive (e.g., optical telescope). In both cases, the internal field is computed for two mutually perpendicular incident polarizations, so that the polarization characteristics can then be analyzed according to the relation between these fields and the scattered far field.
Resumo:
Using a modified Green's function technique the two well-known basic problems of scattering of surface water waves by vertical barriers are reduced to the problem of solving a pair of uncoupled integral equations involving the “jump” and “sum” of the limiting values of the velocity potential on the two sides of the barriers in each case. These integral equations are then solved, in closed form, by the aid of an integral transform technique involving a general trigonometric kernel as applicable to the problems associated with a radiation condition.
Resumo:
Time-domain-finite-wave analysis of the engine exhaust system is usually done using the method of characteristics. This makes use of either the moving frame method, or the stationary frame method. The stationary frame method is more convenient than its counterpart inasmuch as it avoids the tedium of graphical computations. In this paper (part I), the stationary-frame computational scheme along with the boundary conditions has been implemented. The analysis of a uniform tube, cavity-pipe junction including the engine and the radiation ends, and also the simple area discontinuities has been presented. The analysis has been done accounting for wall friction and heat-transfer for a one-dimensional unsteady flow. In the process, a few inconsistencies in the formulations reported in the literature have been pointed out and corrected. In the accompanying paper (part II) results obtained from the simulation are shown to be in good agreement with the experimental observations.
Resumo:
Semiconductor based nanoscale heterostructures are promising candidates for photocatalytic and photovoltaic applications with the sensitization of a wide bandgap semiconductor with a narrow bandgap material being the most viable strategy to maximize the utilization of the solar spectrum. Here, we present a simple wet chemical route to obtain nanoscale heterostructures of ZnO/CdS without using any molecular linker. Our method involves the nucleation of a Cd-precursor on ZnO nanorods with a subsequent sulfidation step leading to the formation of the ZnO/CdS nanoscale heterostructures. Excellent control over the loading of CdS and the microstructure is realized by merely changing the initial concentration of the sulfiding agent. We show that the heterostructures with the lowest CdS loading exhibit an exceptionally high activity for the degradation of methylene blue (MB) under solar irradiation conditions; microstructural and surface analysis reveals that the higher activity in this case is related to the dispersion of the CdS nanoparticles on the ZnO nanorod surface and to the higher concentration of surface hydroxyl species. Detailed analysis of the mechanism of formation of the nanoscale heterostructures reveals that it is possible to obtain deterministic control over the nature of the interfaces. Our synthesis method is general and applicable for other heterostructures where the interfaces need to be engineered for optimal properties. In particular, the absence of any molecular linker at the interface makes our method appealing for photovoltaic applications where faster rates of electron transfer at the heterojunctions are highly desirable.
Resumo:
The anomalous X-ray scattering (AXS) method using Cu and Mo K absorption edges has been employed for obtaining the local structural information of superionic conducting glass having the composition (CuI)(0.3)(Cu2O)(0.35)(MoO3)(0.35). The possible atomic arrangements in near-neighbor region of this glass were estimated by coupling the results with the least-squares analysis so as to reproduce two differential intensity profiles for Cu and Mo as well as the ordinary scattering profile. The coordination number of oxygen around Mo is found to be 6.1 at the distance of 0.187 nm. This implies that the MoO6 octahedral unit is a more probable structural entity in the glass rather than MoO4 tetrahedra which has been proposed based on infrared spectroscopy. The pre-peak shoulder observed at about 10 nm(-1) may be attributed to density fluctuation originating from the MoO6 octahedral units connected with the corner sharing linkage, in which the correlation length is about 0.8 nm. The value of the coordination number of I- around Cu+ is estimated as 4.3 at 0.261 nm, suggesting an arrangement similar to that in molten CuI.
Resumo:
Micelles of different dimeric amphiphiles Br-, n-C(16)H(33)NMe(2)(+) -(CH)(m)-N(+)Me(2)-n-C16H33, Br- (where m = 3, 4, 5, 6, 8, 10, and 12) adapt different morphologies and internal packing arrangements in aqueous media depending on their spacer chain length (m). Detailed measurements of small angle neutron scattering (SANS) cross sections from different bis-cationic, dimeric surfactant micelles in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric micelles. The SANS analysis clearly indicated that the extent of aggregate growth and the variations of shapes of the dimeric micelles depend primarily on the spacer chain length. With spacer chain length, m less than or equal to 4, the propensity of micellar growth was particularly pronounced. The effects of the variation of the concentration of dimeric surfactants with m = 5 and 10 on the SANS spectra and the effects of the temperature variation for the micellar system with m = 10 were also examined. The critical micelle concentrations (cmc) and their microenvironmental feature, namely, the microviscosities that the dimeric micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were also determined. The changes of cmcs and microviscosities as a function of spacer chain length have been explained in terms of conformational variations and progressive looping of the spacer in micellar core upon increasing m values.
Resumo:
There are three ways in which an electromagnetic wave can undergo scattering in a plasma: (i) when the scattering of radiation occurs by a single electron, it is called Compton Scattering (CS); (ii) if it occurs by a longitudinal electron plasma mode, it is called Stimulated Raman Scattering (SRS), and (iii) if it occurs by a highly damped electron plasma mode, it is called Stimulated Compton Scattering (SCS). The non-thermal continuum of quasars is believed to be produced through the combined action of synchrotron and inverse Compton processes, which are essentially single-particle processes. Here, we investigate the role of SRS and SCS in the generation of continuum radiation from these compact objects. It is shown as an example that the complete spectrum of 3C 273 can be reproduced by suitably combining SCS and SRS. The differential contributions of SCS and SRS under different values of the plasma parameters are also calculated.
Resumo:
Realizing the importance of aerosol characterization and addressing its spatio-temporal heterogeneities over Bay of Bengal (BoB), campaign mode observations of aerosol parameters were carried out using simultaneous cruise, aircraft and land-based measurements during the Winter Integrated Campaign for Aerosols gases and Radiation Budget (W_ICARB). Under this, airborne measurements of total and hemispheric backscatter coefficients were made over several regions of coastal India and eastern BoB using a three wavelength integrating nephelometer. The measurements include high resolution multi-level (ML) sorties for altitude profiles and bi-level (BL) sorties for spatial gradients within and above the Marine Atmospheric Boundary Layer (MABL) over BoB. The vertical profiles of the scattering coefficients are investigated in light of the information on the vertical structure of the atmospheric stability, which was derived from the collocated GPS (Global Positioning System) aided radiosonde ascents. In general, the altitude profiles revealed that the scattering coefficient remained steady in the convectively well-mixed regions and dropped off above the MABL. This decrease was quite rapid off the Indian mainland, while it was more gradual in the eastern BoB. Investigation on horizontal gradients revealed that the scattering coefficients over northern BoB are 3 to 4 times higher compared to that of central BoB within and above the MABL. A north-south gradient in scattering coefficients is observed over Port Blair in the eastern BoB, with values decreasing from south to north, which is attributed to the similar gradient in the surface wind speed, which can be replicated in the sea salt abundance. The gradients are parameterized using best-fit analytical functions.
Resumo:
Measurements of small-angle neutron scattering (SANS) cross sections from different mixed micelles composed of CTAB and Br-, n-C16H33N+Me2-(CH2)(m)N+Me2-n-C16H33, Br- (16-m-16, 2Br(-), where m = 3, 5, and 10), in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macroion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the micelles. The aggregate composition matches with that predicted from an ideal mixing model. The SANS analysis further indicates that the extent of aggregate growth and the Variations of shapes of the mixed micelles could be modulated by the amount of dimeric surfactant present in these mixtures. With the spacer chain length m less than or equal to 4 in the dimeric surfactant, the propensity of micellar growth is particularly pronounced. The effect of the variation of the temperature for the mixed micellar system (23.1 mol % of 16-3-16, 2Br(-)) was also examined. The systemic microviscosities that the mixed micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were determined. The variation of the microviscosities of the mixed micelles as a function of percentages of the dimeric surfactants could be explained in terms of conformational variations and progressive looping of the spacer chain of dimeric surfactants in mixed micellar aggregates with increasing m values.
Resumo:
We present experimental x-ray-absorption spectra at the oxygen and 3d transition-metal K edges of LaFeO3 and LaCoO3. We interpret the experimental results in terms of detailed theoretical calculations based on multiple-scattering theory. Along with providing an understanding of the origin of various experimental features, we investigate the effects of structural distortions and the core-hole potential in determining the experimental spectral shape. The results indicate that the core-hole potential as well as many-body effects within the valence electrons do not have any strong effect on the spectra suggesting that the spectral features can be directly interpreted in terms of the electronic structure of such compounds.
Resumo:
Transient thermal sensitivity is studied for systems that are subjected to conductive heat transfer within themselves and radiative heat transfer with the surrounding environment, including solar heat radiation, The battery in the Indian national communication satellite is one such system for which the studies are conducted with respect to panel conduction, conductance of insulating blanket, power dissipation within the battery, and absorptance and emittance of various elements, Comparison of sensitivities revealed that battery temperature is sensitive to its power dissipation during the beginning of life of the spacecraft, whereas toward the end of life of the spacecraft mission, the effect of absorptance of optical solar reflector is dominating, The influence of optical property values of the multilayer insulation blanket is almost negligible. Among the parameters studied in this analysis, the battery temperature is found to be mast sensitive to emittance of the optical solar reflector.
Resumo:
The anomalous X-ray scattering (AXS) method using Mo K absorption edges has been employed for obtaining the local structural information of superionic conducting glass having the composition (AgI)(0.6)(Ag2MoO4)(0.4). The possible atomic arrangements in the near-neighbor region of this glass were estimated by coupling the results with the least-squares variational analysis so as to reproduce the differential intensity profile for Mo as well as the ordinary scattering profile. The coordination number of oxygen around Mo is found to be about 4 at the distance of 0.180 mn. This implies that the most probable structural entity in the glass is the MoO4 tetrahedral unit which has been proposed based on infrared spectroscopy. The value of the coordination number of I- around Ag+ is estimated as 4.4 at 0.287 nm, suggesting an arrangement similar to that of crystalline or molten AgI.
Resumo:
Scattering of coherent light from scattering particles causes phase shift to the scattered light. The interference of unscattered and scattered light causes the formation of speckles. When the scattering particles, under the influence of an ultrasound (US) pressure wave, vibrate, the phase shift fluctuates, thereby causing fluctuation in speckle intensity. We use the laser speckle contrast analysis (LSCA) to reconstruct a map of the elastic property (Young's modulus) of soft tissue-mimicking phantom. The displacement of the scatters is inversely related to the Young's modulus of the medium. The elastic properties of soft biological tissues vary, many fold with malignancy. The experimental results show that laser speckle contrast (LSC) is very sensitive to the pathological changes in a soft tissue medium. The experiments are carried out on a phantom with two cylindrical inclusions of sizes 6 mm in diameter, separated by 8 mm between them. Three samples are made. One inclusion has Young's modulus E of 40 kPa. The second inclusion has either a Young's modulus E of 20 kPa, or scattering coefficient of mu'(s), = 3.00 mm(-1) or absorption coefficient of mu(a) = 0.03 mm(-1). The optical absorption (mu(a)), reduced scattering (mu'(s)) coefficient, and the Young's modulus of the background are mu(a) = 0.01 mm(-1), mu'(s) = 1.00 mm(-1) and 12kPa, respectively. The experiments are carried out on all three phantoms. On a phantom with two inclusions of Young's modulus of 20 and 40 kPa, the measured relative speckle image contrasts are 36.55% and 63.72%, respectively. Experiments are repeated on phantoms with inclusions of mu(a) = 0.03 mm-1, E = 40 kPa and mu'(s) = 3.00 mm(-1). The results show that it is possible to detect inclusions with contrasts in optical absorption, optical scattering, and Young's modulus. Studies of the variation of laser speckle contrast with ultrasound driving force for various values of mu(a), mu'(s), and Young's modulus of the tissue mimicking medium are also carried out. (C) 2011 American Institute of Physics. doi:10.1063/1.3592352]
Resumo:
Electron Diffraction Structure Analysis (EDSA) with data from standard selected-area electron diffraction (SAED) is still the method of choice for structure determination of nano-sized single crystals. The recently determined heavy atom structure α-Ti2Se (Albe & Weirich, 2003) is used as an example to illustrate the developed procedure for structure determination from two-dimensionally SAED data via direct methods and kinematical least-squares refinement. Despite the investigated crystallite had a relatively large effective thickness of about 230 Å as determined from dynamical calculations, the obtained structural model from SAED data was found in good agreement with the result from an earlier single crystal X-ray study (Weirich, Pöttgen & Simon, 1996). Arguments, which support the validity of the used quasi-kinematical approach, are given in the text. The influences of dynamical and secondary scattering on the quality of the data and the structure solution are discussed. Moreover, the usefulness of first-principles calculations for verifying the results from EDSA is demonstrated by two examples, whereas one of the structures was unattainable by conventional X-ray diffraction.