359 resultados para Quinone Oxidoreductase
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Farmacêuticas - FCFAR
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The use of plants compounds for the control of insects has increased worldwide. This occurs because the vegetal insecticides contains biodegradable compounds, nontoxic products and potentially suitable for use in pest control. Plants of the family Annonaceae are standing out as biopesticides because they are bioactive naturally in addition to presenting cytotoxic activity, antitumor, vermifuge, antimicrobial, immunosuppressive, anti-emetic, inhibiting appetite, antimalarial and also insecticide. The insecticidal activity of Annonaceae is due to the presence of acetogenins, substances that act on mitochondria inhibiting the NADH -ubiquinone oxidoreductase, causing the death of insects. In this review we report the use of Annonaceae in insect control, showing that so far, only 42 species of Annonaceae have information insecticidal activity against just over 60 species of insect pests. This information shows that much research is still needed, especially to get to know the insecticidal activity of other Annonaceae species, in addition to its effects on insect pests not yet studied. So we will have as an alternative to sustainable development, new vegetal insecticides such as those obtained from different Annonaceae species, which can act as an additional tool to balance the excesses of agriculture chemical or conventional.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The human enzyme dihydroorotate dehydrogenase (HsDHODH) has been studied for being a target for development of new antineoplasic and antiproliferative drugs. The synthetic peptide N-t(DH) represents the N-terminal microdomain of this enzyme, responsible for anchoring it to the inner mitochondrial membrane. Also, it is known to harbor quinones that are essential for enzyme catalysis. Here we report structural features of the peptide/membrane interactions obtained by using CD and DEER spectroscopic techniques, both in micelles and in lipid vesicles. The data revealed different peptide conformational states in micelles and liposomes, which could suggest that this microdomain acts in specific regions or areas of the mitochondria, which can be related with the control of the quinone access to the HsDHODH active site. This is the first study to report on conformational changes of the HsDHODH N-terminal microdomain through a combination of CD and DEER spectroscopic techniques.