921 resultados para Queueing Traffic.
Resumo:
Motivated by certain situations in manufacturing systems and communication networks, we look into the problem of maximizing the profit in a queueing system with linear reward and cost structure and having a choice of selecting the streams of Poisson arrivals according to an independent Markov chain. We view the system as a MMPP/GI/1 queue and seek to maximize the profits by optimally choosing the stationary probabilities of the modulating Markov chain. We consider two formulations of the optimization problem. The first one (which we call the PUT problem) seeks to maximize the profit per unit time whereas the second one considers the maximization of the profit per accepted customer (the PAC problem). In each of these formulations, we explore three separate problems. In the first one, the constraints come from bounding the utilization of an infinite capacity server; in the second one the constraints arise from bounding the mean queue length of the same queue; and in the third one the finite capacity of the buffer reflect as a set of constraints. In the problems bounding the utilization factor of the queue, the solutions are given by essentially linear programs, while the problems with mean queue length constraints are linear programs if the service is exponentially distributed. The problems modeling the finite capacity queue are non-convex programs for which global maxima can be found. There is a rich relationship between the solutions of the PUT and PAC problems. In particular, the PUT solutions always make the server work at a utilization factor that is no less than that of the PAC solutions.
Resumo:
We consider the slotted ALOHA protocol on a channel with a capture effect. There are M
Resumo:
Modelling of city traffic involves capturing of all the dynamics that exist in real-time traffic. Probabilistic models and queuing theory have been used for mathematical representation of the traffic system. This paper proposes the concept of modelling the traffic system using bond graphs wherein traffic flow is based on energy conservation. The proposed modelling approach uses switched junctions to model complex traffic networks. This paper presents the modelling, simulation and experimental validation aspects.
Resumo:
Recently, Brownian networks have emerged as an effective stochastic model to approximate multiclass queueing networks with dynamic scheduling capability, under conditions of balanced heavy loading. This paper is a tutorial introduction to dynamic scheduling in manufacturing systems using Brownian networks. The article starts with motivational examples. It then provides a review of relevant weak convergence concepts, followed by a description of the limiting behaviour of queueing systems under heavy traffic. The Brownian approximation procedure is discussed in detail and generic case studies are provided to illustrate the procedure and demonstrate its effectiveness. This paper places emphasis only on the results and aspires to provide the reader with an up-to-date understanding of dynamic scheduling based on Brownian approximations.
Resumo:
Fork-join queueing systems offer a natural modelling paradigm for parallel processing systems and for assembly operations in automated manufacturing. The analysis of fork-join queueing systems has been an important subject of research in recent years. Existing analysis methodologies-both exact and approximate-assume that the servers are failure-free. In this study, we consider fork-join queueing systems in the presence of server failures and compute the cumulative distribution of performability with respect to the response time of such systems. For this, we employ a computational methodology that uses a recent technique based on randomization. We compare the performability of three different fork-join queueing models proposed in the literature: the distributed model, the centralized splitting model, and the split-merge model. The numerical results show that the centralized splitting model offers the highest levels of performability, followed by the distributed splitting and split-merge models.
Resumo:
We provide a comparative performance evaluation of packet queuing and link admission strategies for low-speed wide area network Links (e.g. 9600 bps, 64 kbps) that interconnect relatively highspeed, connectionless local area networks (e.g. 10 Mbps). In particular, we are concerned with the problem of providing differential quality of service to interLAN remote terminal and file transfer sessions, and throughput fairness between interLAN file transfer sessions. We use analytical and simulation models to study a variety of strategies. Our work also serves to address the performance comparison of connectionless vs. connection-oriented interconnection of CLNS LANS. When provision of priority at the physical transmission level is not feasible, we show, for low-speed WAN links (e.g. 9600 bps), the superiority of connection-oriented interconnection of connectionless LANs, with segregation of traffic streams with different QoS requirements into different window flow controlled connections. Such an implementation can easily be obtained by transporting IP packets over an X.25 WAN. For 64 kbps WAN links, there is a drop in file transfer throughputs, owing to connection overheads, but the other advantages are retained, The same solution also helps to provide throughput fairness between interLAN file transfer sessions. We also provide a corroboration of some of our modelling results with results from an experimental test-bed.
Resumo:
Consider a single-server multiclass queueing system with K classes where the individual queues are fed by K-correlated interrupted Poisson streams generated in the states of a K-state stationary modulating Markov chain. The service times for all the classes are drawn independently from the same distribution. There is a setup time (and/or a setup cost) incurred whenever the server switches from one queue to another. It is required to minimize the sum of discounted inventory and setup costs over an infinite horizon. We provide sufficient conditions under which exhaustive service policies are optimal. We then present some simulation results for a two-class queueing system to show that exhaustive, threshold policies outperform non-exhaustive policies.
Resumo:
We propose, for the first time, a reinforcement learning (RL) algorithm with function approximation for traffic signal control. Our algorithm incorporates state-action features and is easily implementable in high-dimensional settings. Prior work, e. g., the work of Abdulhai et al., on the application of RL to traffic signal control requires full-state representations and cannot be implemented, even in moderate-sized road networks, because the computational complexity exponentially grows in the numbers of lanes and junctions. We tackle this problem of the curse of dimensionality by effectively using feature-based state representations that use a broad characterization of the level of congestion as low, medium, or high. One advantage of our algorithm is that, unlike prior work based on RL, it does not require precise information on queue lengths and elapsed times at each lane but instead works with the aforementioned described features. The number of features that our algorithm requires is linear to the number of signaled lanes, thereby leading to several orders of magnitude reduction in the computational complexity. We perform implementations of our algorithm on various settings and show performance comparisons with other algorithms in the literature, including the works of Abdulhai et al. and Cools et al., as well as the fixed-timing and the longest queue algorithms. For comparison, we also develop an RL algorithm that uses full-state representation and incorporates prioritization of traffic, unlike the work of Abdulhai et al. We observe that our algorithm outperforms all the other algorithms on all the road network settings that we consider.
Resumo:
During the last decade, developing countries such as India have been exhibiting rapid increase in human population and vehicles, and increase in road accidents. Inappropriate driving behaviour is considered one of the major causes of road accidents in India as compared to defective geometric design of pavement or mechanical defects in vehicles. It can result in conditions such as lack of lane discipline, disregard to traffic laws, frequent traffic violations, increase in crashes due to self-centred driving, etc. It also demotivates educated drivers from following good driving practices. Hence, improved driver behaviour can be an effective countermeasure to reduce the vulnerability of road users and inhibit crash risks. This article highlights improved driver behaviour through better driver education, driver training and licensing procedures along with good on-road enforcement; as an effective countermeasure to ensure road safety in India. Based on the review and analysis, the article also recommends certain measures pertaining to driver licensing and traffic law enforcement in India aimed at improving road safety.
Resumo:
A wireless Energy Harvesting Sensor (EHS) needs to send data packets arriving in its queue over a fading channel at maximum possible throughput while ensuring acceptable packet delays. At the same time, it needs to ensure that energy neutrality is satisfied, i.e., the average energy drawn from a battery should equal the amount of energy deposited in it minus the energy lost due to the inefficiency of the battery. In this work, a framework is developed under which a system designer can optimize the performance of the EHS node using power control based on the current channel state information, when the EHS node employs a single modulation and coding scheme and the channel is Rayleigh fading. Optimal system parameters for throughput optimal, delay optimal and delay-constrained throughput optimal policies that ensure energy neutrality are derived. It is seen that a throughput optimal (maximal) policy is packet delay-unbounded and an average delay optimal (minimal) policy achieves negligibly small throughput. Finally, the influence of the harvested energy profile on the performance of the EHS is illustrated through the example of solar energy harvesting.
Resumo:
We develop analytical models for estimating the energy spent by stations (STAs) in infrastructure WLANs when performing TCP controlled file downloads. We focus on the energy spent in radio communication when the STAs are in the Continuously Active Mode (CAM), or in the static Power Save Mode (PSM). Our approach is to develop accurate models for obtaining the fraction of times the STA radios spend in idling, receiving and transmitting. We discuss two traffic models for each mode of operation: (i) each STA performs one large file download, and (ii) the STAs perform short file transfers. We evaluate the rate of STA energy expenditure with long file downloads, and show that static PSM is worse than just using CAM. For short file downloads we compute the number of file downloads that can be completed with given battery capacity, and show that PSM performs better than CAM for this case. We provide a validation of our analytical models using the NS-2 simulator.
Resumo:
We study the problem of optimal bandwidth allocation in communication networks. We consider a queueing model with two queues to which traffic from different competing flows arrive. The queue length at the buffers is observed every T instants of time, on the basis of which a decision on the amount of bandwidth to be allocated to each buffer for the next T instants is made. We consider a class of closed-loop feedback policies for the system and use a twotimescale simultaneous perturbation stochastic approximation(SPSA) algorithm to find an optimal policy within the prescribed class. We study the performance of the proposed algorithm on a numerical setting. Our algorithm is found to exhibit good performance.
Resumo:
The problem of finding optimal parameterized feedback policies for dynamic bandwidth allocation in communication networks is studied. We consider a queueing model with two queues to which traffic from different competing flows arrive. The queue length at the buffers is observed every T instants of time, on the basis of which a decision on the amount of bandwidth to be allocated to each buffer for the next T instants is made. We consider two different classes of multilevel closed-loop feedback policies for the system and use a two-timescale simultaneous perturbation stochastic approximation (SPSA) algorithm to find optimal policies within each prescribed class. We study the performance of the proposed algorithm on a numerical setting and show performance comparisons of the two optimal multilevel closedloop policies with optimal open loop policies. We observe that closed loop policies of Class B that tune parameters for both the queues and do not have the constraint that the entire bandwidth be used at each instant exhibit the best results overall as they offer greater flexibility in parameter tuning. Index Terms — Resource allocation, dynamic bandwidth allocation in communication networks, two-timescale SPSA algorithm, optimal parameterized policies. I.
Resumo:
This paper deals with reducing the waiting times of vehicles at the traffic junctions by synchronizing the traffic signals. Strategies are suggested for betterment of the situation at different time intervals of the day, thus ensuring smooth flow of traffic. The concept of single way systems are also analyzed. The situation is simulated in Witness 2003 Simulation package using various conventions. The average waiting times are reduced by providing an optimal combination for the traffic signal timer. Different signal times are provided for different times of the day, thereby further reducing the average waiting times at specific junctions/roads according to the experienced demands.
Resumo:
We propose for the first time two reinforcement learning algorithms with function approximation for average cost adaptive control of traffic lights. One of these algorithms is a version of Q-learning with function approximation while the other is a policy gradient actor-critic algorithm that incorporates multi-timescale stochastic approximation. We show performance comparisons on various network settings of these algorithms with a range of fixed timing algorithms, as well as a Q-learning algorithm with full state representation that we also implement. We observe that whereas (as expected) on a two-junction corridor, the full state representation algorithm shows the best results, this algorithm is not implementable on larger road networks. The algorithm PG-AC-TLC that we propose is seen to show the best overall performance.