233 resultados para QP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stem cell therapy for ischaemic stroke is an emerging field in light of an increasing number of patients surviving with permanent disability. Several allogenic and autologous cells types are now in clinical trials with preliminary evidence of safety. Some clinical studies have reported functional improvements in some patients. After initial safety evaluation in a Phase 1 study, the conditionally immortalised human neural stem cell line CTX0E03 is currently in a Phase 2 clinical trial (PISCES-II). Previous pre-clinical studies conducted by ReNeuron Ltd, showed evidence of functional recovery in the Bilateral Asymmetry test up to 6 weeks following transplantation into rodent brain, 4 weeks after middle cerebral artery occlusion. Resting-state fMRI is increasingly used to investigate brain function in health and disease, and may also act as a predictor of recovery due to known network changes in the post-stroke recovery period. Resting-state methods have also been applied to non-human primates and rodents which have been found to have analogous resting-state networks to humans. The sensorimotor resting-state network of rodents is impaired following experimental focal ischaemia of the middle cerebral artery territory. However, the effects of stem cell implantation on brain functional networks has not previously been investigated. Prior studies assessed sensorimotor function following sub-cortical implantation of CTX0E03 cells in the rodent post-stroke brain but with no MRI assessments of functional improvements. This thesis presents research on the effect of sub-cortical implantation of CTX0E03 cells on the resting- state sensorimotor network and sensorimotor deficits in the rat following experimental stroke, using protocols based on previous work with this cell line. The work in this thesis identified functional tests of appropriate sensitivity for long-term dysfunction suitable for this laboratory, and investigated non-invasive monitoring of physiological variables required to optimize BOLD signal stability within a high-field MRI scanner. Following experimental stroke, rats demonstrated expected sensorimotor dysfunction and changes in the resting-state sensorimotor network. CTX0E03 cells did not improve post-stroke functional outcome (compared to previous studies) and with no changes in resting-state sensorimotor network activity. However, in control animals, we observed changes in functional networks due to the stereotaxic procedure. This illustrates the sensitivity of resting-state fMRI to stereotaxic procedures. We hypothesise that the damage caused by cell or vehicle implantation may have prevented functional and network recovery which has not been previously identified due to the application of different functional tests. The findings in this thesis represent one of few pre-clinical studies in resting-state fMRI network changes post-stroke and the only to date applying this technique to evaluate functional outcomes following a clinically applicable human neural stem cell treatment for ischaemic stroke. It was found that injury caused by stereotaxic injection should be taken into account when assessing the effectiveness of treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key aspect underpinning life-history theory is the existence of trade-offs. Trade-offs occur because resources are limited, meaning that individuals cannot invest in all traits simultaneously, leading to costs for traits such as growth and reproduction. Such costs may be the reason for the sub-maximal growth rates that are often observed in nature, though the fitness consequences of these costs would depend on the effects on lifetime reproductive success. Recently, much attention has been given to the physiological mechanism that might underlie these life-history trade-offs, with oxidative stress (OS) playing a key role. OS is characterised by a build-up of oxidative damage to tissues (e.g. protein, lipids and DNA) from attack by reactive species (RS). RS, the majority of which are by-products of metabolism, are usually neutralised by antioxidants, however OS occurs when there is an imbalance between the two. There are two main theories linking OS with growth and reproduction. The first is that traits like growth and reproduction, being metabolically demanding, lead to an increase in RS production. The second involves the diversion of resources away from self-maintenance processes (e.g. the redox system) when individuals are faced with enhanced growth or reproductive expenditure. Previous research investigating trade-offs involving growth or reproduction and self-maintenance has been equivocal. One reason for this could be that associations among redox biomarkers can vary greatly so that the biomarker selected for analysis can influence the conclusion reached about an individual’s oxidative status. Therefore the first aim of my thesis was to explore the strength and pattern of integration of five biomarkers of OS (three antioxidants, one damage and one general oxidation measure) in wild blue tit (Cyanistes caeruleus) adults and nestlings (Chapter 2). In doing so, I established that all five biomarkers should be included in future analyses, thus using this collection of biomarkers I explored my next aims; whether enhanced growth (Chapters 3 and 4) or reproductive effort (Chapter 5) can lead to increased OS levels, if these traits are traded off against self-maintenance. I accomplished these aims using both a meta-analytic and experimental approach, the latter involving manipulation of brood size in wild blue tits in order to experimentally alter growth rate of nestlings and provisioning rate (a proxy for reproductive expenditure) of adults. I also investigated the potential for redox integration to be used as an index of body condition (Chapter 2), allowing predictions about future fitness consequences of changes to oxidative state to be made. A growth – self-maintenance trade off was supported by my meta-analytic results (Chapter 4) which found OS to be a constraint on growth. However, when faced with experimentally enhanced growth, animals were typically not able to adjust this trade-off so that oxidative damage resulted. This might support the idea that energetically expensive growth causes resources to be diverted away from the redox system; however, antioxidants did not show an overall reduction in response to growth in the meta-analysis suggesting that oxidative costs of growth may result from increased RS production due to the greater metabolism needed for enhanced growth. My experimental data (Chapter 3) showed a similar pattern, with raised protein damage levels (protein carbonyls; PCs) in the fastest growing blue tit chicks in a brood, compared with their slower growing sibs. These within-brood differences in OS levels likely resulted from within-brood hierarchies and might have masked any between-brood differences, which were not observed here. Despite evidence for a growth – self-maintenance trade off, my experimental results on blue tits found no support for the hypothesis that self-maintenance is also traded off against reproduction, another energetically demanding trait. There was no link between experimentally altered reproductive expenditure and OS, nor was there a direct correlation between reproductive effort and OS (Chapter 5). However, there are various factors that likely influence whether oxidative costs are observed, including environmental conditions and whether such costs are transient. This emphasises the need for longitudinal studies following the same individuals over multiple years and across a wide range of habitats that differ in quality. This would allow investigation into how key life events interact; it might be that raised OS levels from rapid early growth have the potential to constrain reproduction or that high parental OS levels constrain offspring growth. Any oxidative costs resulting from these life-history trade-offs have the potential to impact on future fitness. Redox integration of certain biomarkers might prove to be a useful tool in making predictions about fitness, as I found in Chapter 2, as well as establishing how the redox system responds, as a whole, to changes to growth and reproduction. Finally, if the tissues measured can tolerate a given level of OS, then the level of oxidative damage might be irrelevant and not impact on future fitness at all.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Congenital heart disease (CHD) is the most common birth defect, causing an important rate of morbidity and mortality. Treatment of CHD requires surgical correction in a significant percentage of cases which exposes patients to cardiac and end organ injury. Cardiac surgical procedures often require the utilisation of cardiopulmonary bypass (CPB), a system that replaces heart and lungs function by diverting circulation into an external circuit. The use of CPB can initiate potent inflammatory responses, in addition a proportion of procedures require a period of aortic cross clamp during which the heart is rendered ischaemic and is exposed to injury. High O2 concentrations are used during cardiac procedures and when circulation is re-established to the heart which had adjusted metabolically to ischaemia, further injury is caused in a process known as ischaemic reperfusion injury (IRI). Several strategies are in place in order to protect the heart during surgery, however injury is still caused, having detrimental effects in patients at short and long term. Remote ischaemic preconditioning (RIPC) is a technique proposed as a potential cardioprotective measure. It consists of exposing a remote tissue bed to brief episodes of ischaemia prior to surgery in order to activate protective pathways that would act during CPB, ischaemia and reperfusion. This study aimed to assess RIPC in paediatric patients requiring CHD surgical correction with a translational approach, integrating clinical outcome, marker analysis, cardiac function parameters and molecular mechanisms within the cardiac tissue. A prospective, single blinded, randomized, controlled trial was conducted applying a RIPC protocol to randomised patients through episodes of limb ischaemia on the day before surgery which was repeated right before the surgery started, after anaesthesia induction. Blood samples were obtained before surgery and at three post-operative time points from venous lines, additional pre and post-bypass blood samples were obtained from the right atrium. Myocardial tissue was resected during the ischaemic period of surgery. Echocardiographic images were obtained before the surgery started after anaesthetic induction and the day after surgery, images were stored for later off line analysis. PICU surveillance data was collected including ventilation parameters, inotrope use, standard laboratory analysis and six hourly blood gas analysis. Pre and post-operative quantitation of markers in blood specimens included cardiac troponin I (cTnI) and B-type natriuretic peptide (BNP), inflammatory mediators including interleukins IL-6, IL-8, IL-10, tumour necrosis factor (TNF-α), and the adhesion molecules ICAM-1 and VCAM-1; the renal marker Cystatin C and the cardiovascular markers asymmetric dymethylarginine (ADMA) and symmetric dymethylarginine (SDMA). Nitric oxide (NO) metabolites and cyclic guanosine monophosphate (cGMP) were measured before and after bypass. Myocardial tissue was processed at baseline and after incubation at hyperoxic concentration during four hours in order to mimic surgical conditions. Expression of genes involved in IRI and RIPC pathways was analysed including heat shock proteins (HSPs), toll like receptors (TLRs), transcription factors nuclear factor κ-B (NF- κ-B) and hypoxia inducible factor 1 (HIF-1). The participation of hydrogen sulfide enzymatic genes, apelin and its receptor were explored. There was no significant difference according to group allocation in any of the echocardiographic parameters. There was a tendency for higher cTnI values and inotropic score in control patients post-operatively, however this was not statistically significant. BNP presented no significant difference according to group allocation. Inflammatory parameters tended to be higher in the control group, however only TNF- α was significantly higher. There was no difference in levels of Cystatin C, NO metabolites, cGMP, ADMA or SDMA. RIPC patients required shorter PICU stay, all other clinical and laboratory analysis presented no difference related to the intervention. Gene expression analysis revealed interesting patterns before and after incubation. HSP-60 presented a lower expression at baseline in tissue corresponding to RIPC patients, no other differences were found. This study provided with valuable descriptive information on previously known and newly explored parameters in the study population. Demographic characteristics and the presence of cyanosis before surgery influenced patterns of activity in several parameters, numerous indicators were linked to the degree of injury suffered by the myocardium. RIPC did not reduce markers of cardiac injury or improved echocardiographic parameters and it did not have an effect on end organ function; some effects were seen in inflammatory responses and gene expression analysis. Nevertheless, an important clinical outcome indicator, PICU length of stay was reduced suggesting benefit from the intervention. Larger studies with more statistical power could determine if the tendency of lower injury and inflammatory markers linked to RIPC is real. The present results mostly support findings of larger multicentre trials which have reported no cardiac benefit from RIPC in paediatric cardiac surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En esta memoria se ha implementado una etapa de preprocesado que sirva como primera fase en el proceso de codificación de vídeo. Esta etapa integra dos variedades del filtro de mediana (3×3 y 5×5) y un operador. Dicho operador lleva a cabo el cálculo del gradiente de los píxeles que conforman una imagen o fotograma con objeto de filtrar después aquellos que están por debajo de un determinado valor (threshold). El cálculo de dicho threshold se realiza de manera empírica mediante dos procesos distintos. En el primero se obtienen valores de luminancia y crominancia de píxeles que integran bordes para encontrar aquel que tenga el valor mínimo, mientras que en el segundo se calcula la tasa de píxeles que forman parte de bordes. Una vez se ha realizado el cálculo anterior, se han utilizado distintos valores de threshold, distintas variedades de filtro de mediana y distintos valores de QP (calidad) con objeto de parametrizar las codificaciones que hacen uso de esta nueva etapa. Posteriormente a dichas codificaciones, se han obtenido los tamaños de los bitstreams de salida y se ha evaluado la calidad de los vídeos decodificados o reconstruidos mediante dos métricas objetivas: PSNR y SSIM. Las codificaciones que no utilizan etapa de preprocesado también han sido evaluadas mediante dichas métricas y comparadas con aquellas que sí integran dicha etapa. Los resultados obtenidos dejan patente el compromiso existente entre tamaño de bitstream y calidad, siendo más representativos los de la métrica SSIM, estando esta última más relacionada con la percepción de la imagen por parte del HVS (sistema visual humano). Como resultado, se obtiene para esta métrica tasas de compresión mayores que las alcanzadas sin preprocesamiento, con pérdidas de calidad prácticamente inapreciables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Transcatheter closure of atrial septal defects (ASD) has been accepted world-wide as an alternative to surgical closure with excellent results. This interventional, non-surgical technique plays an important role in the treatment of ASD mostly in the developing world where resources are limited. Objectives: To report the outcomes and short term follow-up of transcatheter closure of ASD over a 12-year period at our institution with limited resources. Patients and Methods: This retrospective study included all patients with the diagnosis of secundum ASD and significant shunting (Qp/Qs > 1.5:1) as well as dilated right atrium and right ventricle who had transcatheter closure at Integrated Cardiovascular Center (PJT), Dr. Cipto Mangunkusumo Hospital between October 2002 and October 2014. One hundred fifty-two patients enrolled in this study were candidates for device closure. Right and left heart cardiac catheterization was performed before the procedure. All patients underwent physical examination, ECG, chest X-ray and transthoracal echocardiography (TTE) prior to device implantation. Results: A total of 152 patients with significant ASD underwent device implantation. Subjects’ age ranged from 0.63 to 69.6 years, with median 9.36 years and mean 16.30 years. They consisted of 33 (21.7%) males and 119 (78.3%) females, with mean body weight of 29.9 kg (range 8 to 75; SD 18.2). The device was successfully implanted in 150 patients where the majority of cases received the Amplatzer septal occluder (147/150; 98%) and the others received the Heart Lifetech ASD occluder (3/150, 2%), whereas two other cases were not suitable for device closure and we decided for surgical closure. The mean ASD size was 19.75 (range 14 - 25) mm. During the procedure, 5 (4.9%) patients had bradycardia and 3 (2.9%) patients had supraventricular tachycardia (SVT), all of which resolved. Conclusions: In our center with limited facilities and manpower, transcatheter closure of atrial septal defect was effective and safe as an alternative treatment to surgery. The outcome and short-term follow-up revealed excellent results, but long-term follow-up is needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypertension is the major risk factor for coronary disease worldwide. Primary hypertension is idiopathic in origin but is thought to arise from multiple risk factors including genetic, lifestyle and environmental influences. Secondary hypertension has a more definite aetiology; its major single cause is primary aldosteronism (PA), the greatest proportion of which is caused by aldosteroneproducing adenoma (APA), where aldosterone is synthesized at high levels by an adenoma of the adrenal gland. There is strong evidence to show that high aldosterone levels cause adverse effects on cardiovascular, cerebrovascular, renal and other systems. Extensive studies have been conducted to analyse the role that regulation of CYP11B2, the gene encoding the aldosterone synthase enzyme plays in determining aldosterone production and the development of hypertension. One significant regulatory factor that has only recently emerged is microRNA (miRNA). miRNAs are small non-coding RNAs, synthesized by a series of enzymatic processes, that negatively regulate gene expression at the posttranscriptional level. Detection and manipulation of miRNA is now known to be a viable method in the treatment, prevention and prognosis of certain diseases. The aim of the present study was to identify miRNAs likely to have a role in the regulation of corticosteroid biosynthesis. To achieve this, the miRNA profile of APA and normal human adrenal tissue was compared, as was the H295R adrenocortical cell line model of adrenocortical function, under both basal conditions and following stimulation of aldosterone production. Key differentially-expressed miRNAs were then identified and bioinformatic tools used to identify likely mRNA targets and pathways for these miRNAs, several of which were investigated and validated using in vitro methods. The background to this study is set out in Chapter 1 of this thesis, followed by a description of the major technical methods employed in Chapter 2. Chapter 3 presents the first of the study results, analysing differences in miRNA profile between APA and normal human adrenal tissue. Microarray was implemented to detect the expression of miRNAs in these two tissue types and several miRNAs were found to vary significantly and consistently between them. Furthermore, members of several miRNA clusters exhibited similar changes in expression pattern between the two tissues e.g. members of cluster miR-29b-1 (miR-29a-3p and miR-29b-3p) and of cluster miR-29b-2 (miR-29b-3p and miR-29c- 3p) are downregulated in APA, while members of cluster let-7a-1 (let-7a-5p and let-7d-5p), cluster let-7a-3 (let-7a-5p and let-7b-5p) and cluster miR-134 (miR- 134 and miR-382) are upregulated. Further bioinformatic analysis explored the possible biological function of these miRNAs using Ingenuity® Systems Pathway Analysis software. This led to the identification of validated mRNAs already known to be targeted by these miRNAs, as well as the prediction of other mRNAs that are likely targets and which are involved in processes relevant to APA pathology including cholesterol synthesis (HMGCR) and corticosteroidogenesis (CYP11B2). It was therefore hypothesised that increases in miR-125a-5p or miR- 335-5p would reduce HMGCR and CYP11B2 expression. Chapter 4 describes the characterisation of H295R cells of different strains and sources (H295R Strain 1, 2, 3 and HAC 15). Expression of CYP11B2 was assessed following application of 3 different stimulants: Angio II, dbcAMP and KCl. The most responsive strain to stimulation was Strain 1 at lower passage numbers. Furthermore, H295R proliferation increased following Angio II stimulation. In Chapter 5, the hypothesis that increases in miR-125a-5p or miR-335-5p reduces HMGCR and CYP11B2 expression was tested using realtime quantitative RT-PCR and transfection of miRNA mimics and inhibitors into the H295R cell line model of adrenocortical function. In this way, miR-125a-5p and miR-335-5p were shown to downregulate CYP11B2 and HMGCR expression, thereby validating certain of the bioinformatic predictions generated in Chapter 3. The study of miRNA profile in the H295R cell lines was conducted in Chapter 6, analysing how it changes under conditions that increase aldosterone secretion, including stimulation Angiotensin II, potassium chloride or dibutyryl cAMP (as a substitute for adrenocorticotropic hormone). miRNA profiling identified 7 miRNAs that are consistently downregulated by all three stimuli relative to basal cells: miR-106a-5p, miR-154-3p, miR-17-5p, miR-196b-5p, miR-19a-3p, miR-20b- 5p and miR-766-3p. These miRNAs include those derived from cluster miR-106a- 5p/miR-20b-5p and cluster miR-17-5p/miR-19a-3p, each producing a single polycistronic transcript. IPA bioinformatic analysis was again applied to identify experimentally validated and predicted mRNA targets of these miRNAs and the key biological pathways likely to be affected. This predicted several interactions between miRNAs derived from cluster miR-17-5p/miR-19a-3p and important mRNAs involved in cholesterol biosynthesis: LDLR and ABCA1. These predictions were investigated by in vitro experiment. miR-17-5p/miR-106a-p and miR-20b-5p were found to be consistently downregulated by stimulation of aldosterone biosynthesis. Moreover, miR-766-3p was upregulation throughout. Furthermore, I was able to validate the downregulation of LDLR by miR-17 transfection, as predicted by IPA. In summary, this study identified key miRNAs that are differentially-expressed in vivo in cases of APA or in vitro following stimulation of aldosterone biosynthesis. The many possible biological actions these miRNAs could have were filtered by bioinformatic analysis and selected interactions validated in vitro. While direct actions of these miRNAs on steroidogenic enzymes were identified, cholesterol handling also emerged as an important target and may represent a useful point of intervention in future therapies designed to modulate aldosterone biosynthesis and reduce its harmful effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During pregnancy, the maternal cardiovascular system undergoes major adaptation. One of these changes is a 40-50 % increase in circulating blood volume which requires a systemic remodelling of the vasculature in order to regulate maternal blood pressure and maximise blood supply to the developing placenta and fetus. These changes are broadly conserved between humans and rats making them an appropriate pre-clinical model in which to study the underlying mechanisms of pregnancy-dependent cardiovascular remodelling. Whilst women are normally protected against cardiovascular disease; pregnancy marks a period of time where women are susceptible to cardiovascular complications. Cardiovascular disease is the leading cause of maternal mortality in the United Kingdom; in particular hypertensive conditions are among the most common complications of pregnancy. One of the main underlying pathologies of these pregnancy complications is thought to be a failure of the maternal cardiovascular system to adapt. The remodelling of the uterine arteries, which directly supply the maternal-fetal interface, is paramount to a healthy pregnancy. Failure of the uterine arteries to remodel sufficiently can result in a number of obstetric complications such as preeclampsia, fetal growth restriction and spontaneous pregnancy loss. At present, it is poorly understood whether this deficient vascular response is due to a predisposition from existing maternal cardiovascular risk factors, the physiological changes that occur during pregnancy or a combination of both. Previous work in our group employed the stroke prone spontaneously hypertensive rat (SHRSP) as a model to investigate pregnancy-dependent remodelling of the uterine arteries. The SHRSP develops hypertension from 6 weeks of age and can be contrasted with the control strain, the Wistar Kyoto (WKY) rat. The phenotype of the SHRSP is therefore reflective of the clinical situation of maternal chronic hypertension during pregnancy. We showed that the SHRSP exhibited a deficient uterine artery remodelling response with respect to both structure and function accompanied by a reduction in litter size relative to the WKY at gestational day (GD) 18. A previous intervention study using nifedipine in the SHRSP achieved successful blood pressure reduction from 6 weeks of age and throughout pregnancy; however uterine artery remodelling and litter size at GD18 was not improved. We concluded that the abnormal uterine artery remodelling present in the SHRSP was independent of chronic hypertension. From these findings, we hypothesised that the SHRSP could be a novel model of spontaneously deficient uterine artery remodelling in response to pregnancy which was underpinned by other as yet unidentified cardiovascular risk factors. In Chapter 1 of this thesis, I have characterised the maternal, placental and fetal phenotype in pregnant (GD18) SHRSP and WKY. The pregnant SHRSP exhibit features of left ventricular hypertrophy in response to pregnancy and altered expression of maternal plasma biomarkers which have been previously associated with hypertension in human pregnancy. I developed a protocol for accurate dissection of the rat uteroplacental unit using qPCR probes specific for each layer. This allowed me to make an accurate and specific statement about gene expression in the SHRSP GD18 placenta; where oxidative stress related gene markers were increased in the vascular compartments. The majority of SHRSP placenta presented at GD18 with a blackened ring which encircled the tissue. Further investigation of the placenta using western blot for caspase 3 cleavage determined that this was likely due to increased cell death in the SHRSP placenta. The SHRSP also presented with a loss of one particular placental cell type at GD18: the glycogen cells. These cells could have been the target of cell death in the SHRSP placenta or were utilised early in pregnancy as a source of energy due to the deficient uterine artery blood supply. Blastocyst implantation was not altered but resorption rate was increased between SHRSP and WKY; indicating that the reduction in litter size in the SHRSP was primarily due to late (>GD14) pregnancy loss. Fetal growth was not restricted in SHRSP which led to the conclusion that SHRSP sacrifice part of their litter to deliver a smaller number of healthier pups. Activation of the immune system is a common pathway that has been implicated in the development of both hypertension and adverse pregnancy outcome. In Chapter 2, I proposed that this may be a mechanism of interest in SHRSP pregnancy and measured the pro-inflammatory cytokine, TNFα, as a marker of inflammation in pregnant SHRSP and WKY and in the placentas from these animals. TNFα was up-regulated in maternal plasma and urine from the GD18 SHRSP. In addition, TNFα release was increased from the GD18 SHRSP placenta as was the expression of the pro-inflammatory TNFα receptor 1 (Tnfr1). In order to investigate whether this excess TNFα was detrimental to SHRSP pregnancy, a vehicle-controlled intervention study using etanercept (a monoclonal antibody which works as a TNFα antagonist) was carried out. Etanercept treatment at GD0, 6, 12 and 18 resulted in an improvement in pregnancy outcome in the SHRSP with an increased litter size and reduced resorption rate. Furthermore, there was an improved uterine artery function in GD18 SHRSP treated with etanercept which was associated with an improved uterine artery blood flow over the course of gestation. In Chapter 3, I sought to identify the source of this detrimental excess of TNFα by designing a panel for maternal leukocytes in the blood and placenta at GD18. A population of CD3- CD161+ cells, which are defined as rat natural killer (NK) cells, were increased in number in the SHRSP. Intracellular flow cytometry also identified this cell type as a source of excess TNFα in blood and placenta from pregnant SHRSP. I then went on to evaluate the effects of etanercept treatment on these CD3- CD161+ cells and showed that etanercept reduced the expression of CD161 and the cytotoxic molecule, granzyme B, in the NK cells. Thus, etanercept limits the cytotoxicity and potential damaging effect of these NK cells in the SHRSP placenta. Analysing the urinary peptidome has clinical potential to identify novel pathways involved with disease and/or to develop biomarker panels to aid and stratify diagnosis. In Chapter 4, I utilised the SHRSP as a pre-clinical model to identify novel urinary peptides associated with hypertensive pregnancy. Firstly, a characterisation study was carried out in the kidney of the WKY and SHRSP. Urine samples from WKY and SHRSP taken at pre-pregnancy, mid-pregnancy (GD12) and late pregnancy (GD18) were used in the peptidomic screen. In order to capture peptides which were markers of hypertensive pregnancy from the urinary peptidomic data, I focussed on those that were only changed in a strain dependent manner at GD12 and 18 and not pre-pregnancy. Peptide fragments from the uromodulin protein were identified from this analysis to be increased in pregnant SHRSP relative to pregnant WKY. This increase in uromodulin was validated at the SHRSP kidney level using qPCR. Uromodulin has previously been identified to be a candidate molecule involved in systemic arterial hypertension but not in hypertensive pregnancy thus is a promising target for further study. In summary, we have characterised the SHRSP as the first model of maternal chronic hypertension during pregnancy and identified that inflammation mediated by TNFα and NK cells plays a key role in the pathology. The evidence presented in this thesis establishes the SHRSP as a pre-clinical model for pregnancy research and can be continued into clinical studies in pregnant women with chronic hypertension which remains an area of unmet research need.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most popular sports globally, soccer has seen a rise in the demands of the game over recent years. An increase in intensity and playing demands, coupled with growing social and economic pressures on soccer players means that optimal preparation is of paramount importance. Recent research has found the modern game, depending on positional role, to consist of approximately 60% more sprint distance in the English Premier League, which was also found to be the case for frequency and success of discrete technical actions (Bush et al., 2015). As a result, the focus on soccer training and player preparedness is becoming more prevalent in scientific research. By designing the appropriate training load, and thus periodization strategies, the aim is to achieve peak fitness in the most efficient way, whilst minimising the risk of injury and illness. Traditionally, training intensity has been based on heart rate responses, however, the emergence of tracking microtechnology such as global positioning system (GPS) and inertial sensors are now able to further quantify biomechanical load as well as physiological stress. Detailed pictures of internal and external loading indices such as these then combine to produce a more holistic view of training load experience by the player during typical drills and phases of training in soccer. The premise of this research is to gain greater understanding of the physical demands of common training methodologies in elite soccer to support optimal match performance. The coaching process may then benefit from being able to prescribe the most effective training to support these. The first experimental chapter in this thesis began by quantify gross training loads of the pre-season and in-season phases in soccer. A broader picture of the training loads inherent in these distinct phases brought more detail as to the type and extent of external loading experienced by soccer players at these times, and how the inclusion of match play influences weekly training rhythms. Training volume (total distance) was found to be high at the start compared to the end of pre-season (37 kilometres and 28 kilometres), where high cardiovascular loads were attained as part of the conditioning focus. This progressed transiently, however, to involve higher-speed, acceleration and change-of-direction stimuli at the end of pre-season compared to the start and to that in-season (1.18 kilometres, 0.70 kilometres and 0.42 kilometres high-intensity running; with 37, 25 and 23 accelerations >3m/s2 respectively) . The decrease in volume and increase in maximal anaerobic activity was evident in the training focus as friendly matches were introduced before the competitive season. The influence of match-play as being a large physical dose in the training week may then determine the change in weekly periodisation and how resulting training loads applied and tapered, if necessary. The focus of research was then directed more specifically to the most common mode of training in soccer, that also featured regularly in the pre-season period in the present study, small-sided games (SSG). The subsequent studies examined numerous manipulations of this specific form of soccer conditioning, such as player numbers as well as absolute and relative playing space available. In contrast to some previous literature, changing the number of players did not seem to influence training responses significantly, although playing format in the possession style brought about larger effects for heart rate (89.9%HRmax) and average velocity (7.6km/h-1). However, the following studies (Chapters 5, 6 and 7) revealed a greater influence of relative playing space available to players in SSG. The larger area at their disposal brought about greater aerobic responses (~90%HRmax), by allowing higher average and peak velocities (>25km/h-1), as well as greater distance acceleration behaviour at greater thresholds (>2.8m/s2). Furthermore, the data points towards space as being a large determinant in strategy of the player in small-sided games (SSG), subsequently shaping their movement behaviour and resulting physical responses. For example, higher average velocities in a possession format (8km/h-1) reflects higher work rate and heart rate load but makes achieving significant neuromuscular accelerations at a high level difficult given higher starting velocities prior to the most intense accelerations (4.2km/h-1). By altering space available and even through intentional numerical imbalances in team numbers, it may be easier for coaches to achieve the desired stimulus for the session or individual player, whether that is for aerobic and neuromuscular conditioning. Large effects were found for heart rate being higher in the underloaded team (85-90%HRmax) compared to the team with more players (80-85%HRmax) as well as for RPE (5AU versus 7AU). This was also apparent for meterage and therefore average velocity. It would also seem neuromuscular load through high acceleration and deceleration efforts were more pronounced with less numbers (given the need to press and close down opponents, and in a larger area relative to the number of players on the underloaded team. The peak accelerations and deceleration achieved was also higher when playing with less players (3-6.2m/s2 and 3-6.1m/s2) Having detailed ways in which to reach desired physical loading responses in common small training formats, Chapter 8 compared SSG to larger 9v9 formats with full-size 11v11 friendly matches. This enabled absolute and relative comparisons to be made and to understand the extent to which smaller training formats are able to replicate the required movements to be successful in competition. In relative terms, it was revealed that relative acceleration distance and Player Load were higher in smaller 4v4 games than match-play (1.1m.min-1 and 0.3m.min-1 >3m/s2; 16.9AU versus 12AU). Although the smallest format did not replicate the high-velocity demands of matches, the results confirmed their efficacy in providing significant neuromuscular load during the training week, which may then be supplemented by high-intensity interval running in order to gain exposure to more maximal speed work. In summary, the data presented provide valuable information from GPS and inertial sensor microtechnology which may then be used to understand training better to manipulate types of load according to physical conditioning objectives. For example, a library of resources to direct planning of drills of varying cardiovascular, neuromuscular and perceptual load can be created to give more confidence in session outcomes. Combining external and internal load data of common soccer training drills, and their application across different phases and training objectives may give coaches a powerful tool to plan and periodize training.