977 resultados para Proximity detectors.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercially available LaBr3:5% Ce3+ scintillators show with photomultiplier tube readout about 2.7% energy resolution for the detection of 662 keV γ-rays. Here we will show that by co-doping LaBr3:Ce3+ with Sr2+ or Ca2+ the resolution is improved to 2.0%. Such an improvement is attributed to a strong reduction of the scintillation light losses that are due to radiationless recombination of free electrons and holes during the earliest stages (1–10 ps) inside the high free charge carrier density parts of the ionization track.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown previously that the raft-associated proteins flotillin-1 and -2 are rapidly recruited to the uropods of chemoattractant-stimulated human neutrophils and T-cells and are involved in cell polarization. Other proteins such as the adhesion receptor PSGL-1, the actin-membrane linker proteins ezrin/radixin/moesin (ERM) and the signaling enzyme phosphatidylinositol-4-phosphate 5-kinase type Iγ90 (PIPKIγ90) also accumulate in the T-cell uropod. Using the in situ proximity ligation assay (PLA) we now have investigated putative close associations of these proteins in human freshly isolated T-cells before and after chemokine addition. The PLA allows in situ subcellular localization of close proximity of endogenous proteins at single-molecule resolution in fixed cells. It allows detection also of weaker and transient complexes that would not be revealed with co-immunoprecipitation approaches. We previously provided evidence for heterodimer formation of tagged flotillin-1 and -2 in T-cells before and after chemokine addition using fluorescence resonance energy transfer (FRET). We now confirm these findings using PLA for the endogenous flotillins in fixed human T-cells. Moreover, in agreement with the literature, our PLA findings confirm a close association of endogenous PSGL-1 and ERM proteins both in resting and chemokine-activated human T-cells. In addition, we provide novel evidence using the PLA for close associations of endogenous activated ERM proteins with PIPKIγ90 and of endogenous flotillins with PSGL-1 in human T-cells, before and after chemokine addition. Our findings suggest that preformed clusters of these proteins coalesce in the uropod upon cell stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated characteristics of optically stimulated luminescent detectors (OSLDs) in protons, allowing comparison to thermoluminescent detectors, and to be implemented into the Radiological Physics Center’s (RPC) remote audit quality assurance program for protons, and for remote anthropomorphic phantom irradiations. The OSLDs used were aluminum oxide (Al2O3:C) nanoDots from Landauer, Inc. (Glenwood, Ill.) measuring 10x10x2 mm3. A square, 20(L)x20(W)x0.5(H) cm3 piece of solid water was fabricated with pockets to allow OSLDs and TLDs to be irradiated simultaneously and perpendicular to the beam. Irradiations were performed at 5cm depth in photons, and in the center of a 10 cm SOBP in a 200MeV proton beam. Additionally, the Radiological Physics Center’s anthropomorphic pelvic phantom was used to test the angular dependence of OSLDs in photons and protons. A cylindrical insert in the phantom allows the dosimeters to be rotated to any angle with a fixed gantry angle. OSLDs were irradiated at 12 angles between 0 and 360 degrees. The OSLDs were read out with a MicroStar reader from Landauer, Inc. Dose response indicates that at angles where the dosimeter is near parallel with the radiation beam response is reduced slightly. Measurements in proton beams do not show significant angular dependence. Post-irradiation fading of OSLDs was studied in proton beams to determine if the fading was different than that of photons. The fading results showed no significant difference from results in photon beams. OSLDs and TLDs are comparable within 3% in photon beams and a correction factor can be posited for proton beams. With angular dependence characteristics defined, OSLDs can be implemented into multiple-field treatment plans in photons and protons and used in the RPC’s quality assurance program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of the AEgIS experiment at CERN is to test the weak equivalence principle for antimatter. AEgIS will measure the free-fall of an antihydrogen beam traversing a moir'e deflectometer. The goal is to determine the gravitational acceleration with an initial relative accuracy of 1% by using an emulsion detector combined with a silicon μ-strip detector to measure the time of flight. Nuclear emulsions can measure the annihilation vertex of antihydrogen atoms with a precision of ~ 1–2 μm r.m.s. We present here results for emulsion detectors operated in vacuum using low energy antiprotons from the CERN antiproton decelerator. We compare with Monte Carlo simulations, and discuss the impact on the AEgIS project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION The proximity of the roots of the posterior maxillary teeth to the maxillary sinus is a constant challenge to the dental practitioner. Because the majority of studies have assessed the relationship regarding molars, the present study focused on premolars. METHODS Cone-beam computed tomographic images of 192 patients were reconstructed in sagittal, coronal, and axial planes to quantify the distances between the root apices of the maxillary premolars and the adjacent maxillary sinus. Measurements were taken for each root, and data were correlated with age, sex, side, and presence of both or absence of 1 of the 2 premolars. RESULTS A total of 296 teeth (177 first and 119 second premolars) were evaluated. The mean distances from buccal roots of the first premolars to the border of the maxillary sinus in the sagittal, coronal, and axial planes ranged from 5.15 ± 2.99 to 8.28 ± 6.27 mm. From palatal roots, the mean distances ranged from 4.20 ± 3.69 to 7.17 ± 6.14 mm. The mean distances of second premolars were markedly shorter in buccal roots between 2.32 ± 2.19 and 3.28 ± 3.17 mm and in palatal roots between 2.68 ± 3.58 and 3.80 ± 3.71 mm, respectively. The frequency of a premolar root protrusion into the maxillary sinus was very low in first premolars (0%-7.2%) but higher in second premolars (2.5%-13.6%). Sex, age, side, and presence/absence of premolars failed to significantly influence the mean distances between premolar roots and the maxillary sinus. CONCLUSIONS Based on the calculated mean distances of the present study, only few premolars (and if so second premolars) would present a risk of violating the border of the maxillary sinus during conventional or surgical endodontic treatment or in case of tooth extraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration,and the potential to perform image processing operations on-chip and in real-time. Here, the major challenges and design drivers for ground-based and space-based optical observation strategies for objects in Earth orbit have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and spacebased strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey assuming a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario a sensor in a sun-synchronous LEO orbit, always pointing in the anti-sun direction to achieve optimum illumination conditions for small LEO debris was simulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dual-phase time projection chambers (TPCs) filled with the liquid noble gas xenon (LXe) are currently the most sensitive detectors searching for interactions of WIMP dark matter in a laboratory-based experiment. This is achieved by combining a large, monolithic dark matter target of a very low background with the capability to localize the interaction vertex in three dimensions, allowing for target fiducialization and multiple-scatter rejection. The background in dual-phase LXe TPCs is further reduced by the simultaneous measurement of the scintillation and ionization signal from a particle interaction, which is used to distinguish signal from background signatures. This article reviews the principle of dual-phase LXe TPCs, and provides an overview about running as well as future experimental efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~2X 10-48 cm2 and WIMP masses around 50 GeV c 2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~6 GeV c-2 to cross sections above ~4X10-45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6X1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.