950 resultados para Proto-Oncogene Proteins c-myc -- genetics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The c-myc oncogene has the unusual ability to induce proliferation and apoptosis. Transgenic mice have been generated in which the expression of Myc is under the control of an epithelial-specific keratin 5 (K5) promoter. These mice have increased levels of proliferation and p53-dependent apoptosis, and are predisposed to developing spontaneous tumors in epithelial tissues. In this study, various knockout mice were bred to K5 Myc transgenic mice to identify factors involved in the aberrant apoptosis, hyperproliferation, and spontaneous tumorigenesis present in these mice. Consistent with in vitro studies, Myc-induced, p53-dependent apoptosis in transgenic epidermis was found to be partially dependent on p19ARF, a p53 regulator that inhibits mdm2. Additionally, the rate of tumorigenesis was increased when p19ARF was absent in Myc transgenic mice. Consistent with previous reports that some E2F family members may function as tumor suppressors, inactivation of either E2f1 or E2f2 was found to accelerate tumor development in the K5 Myc transgenic mice. Acceleration of tumorigenesis in the absence of E2F1 occurred despite the fact that apoptotic levels were increased in transgenic tissue and tumors null for E2f1 , whereas hyperproliferation was unaffected. In contrast, inactivation of E2f2 was found to increase hyperproliferation in the K5 Myc transgenic mice, while having no effect on apoptosis. The lack of E2f1 in the Myc transgenic mice increased the expression of several p53 transcription target genes, which may explain the increased apoptosis in these mice. In transgenic epidermis, p53 is phosphorylated at serine 18, a site of phosphorylation by ATM. Inactivation of ATM in K5 Myc transgenic mice impaired Myc-induced apoptosis, identifying ATM as having an important role in Myc-induced apoptosis. Moreover, the absence of ATM accelerates tumorigenesis in K5-expressing tissues. However, p53 accumulation and phosphorylation at serine 18 induced by Myc occurs independent of ATM. Therefore, another activity of ATM appears to be important for Myc-induced apoptosis. These findings show that acceleration of tumorigenesis in K5 Myc transgenic mice, as in the case of p53, p19ARF, E2F1, E2F2, and ATM absence, does not necessarily correlate with suppression of Myc-induced apoptosis, as seen only when p53, p19ARF or ATM was absent. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of the proto-oncogene MYC has been implicated in the genesis of diverse human cancers. One explanation for the role of MYC in tumorigenesis has been that this gene might drive cells inappropriately through the division cycle, leading to the relentless proliferation characteristic of the neoplastic phenotype. Herein, we report that the overexpression of MYC alone cannot sustain the division cycle of normal cells but instead leads to their arrest in G2. We used an inducible form of the MYC protein to stimulate normal human and rodent fibroblasts. The stimulated cells passed through G1 and S but arrested in G2 and frequently became aneuploid, presumably as a result of inappropriate reinitiation of DNA synthesis. Absence of the tumor suppressor gene p53 or its downstream effector p21 reduced the frequency of both G2 arrest and aneuploidy, apparently by compromising the G2 checkpoint control. Thus, relaxation of the G2 checkpoint may be an essential early event in tumorigenesis by MYC. The loss of p53 function seems to be one mechanism by which this relaxation commonly occurs. These findings dramatize how multiple genetic events can collaborate to produce neoplastic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence suggests that the Myc and Mad1 proteins are implicated in the regulation of the gene encoding the human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase. We have analyzed the in vivo interaction between endogenous c-Myc and Mad1 proteins and the hTERT promoter in HL60 cells with the use of the chromatin immunoprecipitation assay. The E-boxes at the hTERT proximal promoter were occupied in vivo by c-Myc in exponentially proliferating HL60 cells but not in cells induced to differentiate by DMSO. In contrast, Mad1 protein was induced and bound to the hTERT promoter in differentiated HL60 cells. Concomitantly, the acetylation of the histones at the promoter was significantly reduced. These data suggest that the reciprocal E-box occupancy by c-Myc and Mad1 is responsible for activation and repression of the hTERT gene in proliferating and differentiated HL60 cells, respectively. Furthermore, the histone deacetylase inhibitor trichostatin A inhibited deacetylation of histones at the hTERT promoter and attenuated the repression of hTERT transcription during HL60 cell differentiation. In addition, trichostatin A treatment activated hTERT transcription in resting human lymphocytes and fibroblasts. Taken together, these results indicate that acetylation/deacetylation of histones is operative in the regulation of hTERT expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal transducer and activator of transcription (STAT) proteins perform key roles in mediating signaling by cytokines and growth factors, including platelet-derived growth factor (PDGF). In addition, Src family kinases activate STAT signaling and are required for PDGF-induced mitogenesis in normal cells. One STAT family member, Stat3, has been shown to have an essential role in cell transformation by the Src oncoprotein. However, the mechanisms by which STAT-signaling pathways contribute to mitogenesis and transformation are not fully defined. We show here that disruption of Stat3 signaling by using dominant-negative Stat3β protein in NIH 3T3 fibroblasts suppresses c-Myc expression concomitant with inhibition of v-Src-induced transformation. Ectopic expression of c-Myc is able to partially reverse this inhibition, suggesting that c-Myc is a downstream effector of Stat3 signaling in v-Src transformation. Furthermore, c-myc gene knockout fibroblasts are refractory to transformation by v-Src, consistent with a requirement for c-Myc protein in v-Src transformation. In normal NIH 3T3 cells, disruption of Stat3 signaling with dominant-negative Stat3β protein inhibits PDGF-induced mitogenesis in a manner that is reversed by ectopic c-Myc expression. Moreover, inhibition of Src family kinases with the pharmacologic agent, SU6656, blocks Stat3 activation by PDGF. These findings, combined together, delineate the signaling pathway, PDGF → Src → Stat3 → Myc, that is important in normal PDGF-induced mitogenesis and subverted in Src transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a two-hybrid strategy for detection of interactions with transactivator proteins. This repressed transactivator (RTA) system employs the N-terminal repression domain of the yeast general repressor TUP1. TUP1-GAL80 fusion proteins, when coexpressed with GAL4, are shown to inhibit transcription of GAL4-dependent reporter genes. This effect requires the C-terminal 30 residues of GAL4, which are required for interaction with GAL80 in vitro. Furthermore, repression of GAL transcription by TUP1-GAL80 requires SRB10, demonstrating that the TUP1 repression domain, in the context of a two-hybrid interaction, functions by the same mechanism as endogenous TUP1. Using this strategy, we demonstrate interactions between the mammalian basic helix–loop–helix proteins MyoD and E12, and between c-Myc and Bin-1. We have also identified interacting clones from a TUP1-cDNA fusion expression library by using GAL4-VP16 as a bait fusion. These results demonstrate that RTA is generally applicable for identifying and characterizing interactions with transactivator proteins in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BCR-ABL is a chimeric oncogene generated by translocation of sequences from the c-abl protein-tyrosine kinase gene on chromosome 9 into the BCR gene on chromosome 22. Alternative chimeric proteins, p210BCR-ABL and p190BCR-ABL, are produced that are characteristic of chronic myelogenous leukemia and acute lymphoblastic leukemia, respectively. Their role in the etiology of human leukemia remains to be defined. Transformed murine hematopoietic cells can be used as a model of BCR-ABL function since these cells can be made growth factor independent and tumorigenic by the action of the BCR-ABL oncogene. We show that the BCR-ABL oncogenes prevent apoptotic death in these cells by inducing a Bcl-2 expression pathway. Furthermore, BCR-ABL-expressing cells revert to factor dependence and nontumorigenicity after Bcl-2 expression is suppressed. These results help to explain the ability of BCR-ABL oncogenes to synergize with c-myc in cell transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiomatoid fibrous histiocytoma (AFH) is a rare soft tissue neoplasm of intermediate biologic potential and uncertain differentiation, most often arising in the extremities of children and young adults. Although it has characteristic histologic features of a lymphoid cuff surrounding nodules of ovoid cells with blood-filled cystic cavities, diagnosis is often difficult due to its morphologic heterogeneity and lack of specific immunoprofile. Angiomatoid fibrous histiocytoma is associated with recurrent chromosomal translocations, leading to characteristic EWSR1-CREB1, EWSR1-ATF1, and, rarely, FUS-ATF1 gene fusions; fluorescence in situ hybridization (FISH), detecting EWSR1 or FUS rearrangements, and reverse transcription-polymerase chain reaction (RT-PCR) for EWSR1-CREB1 and EWSR1-ATF1 fusion transcripts have become routine ancillary tools. We present a large comparative series of FISH and RT-PCR for AFH. Seventeen neoplasms (from 16 patients) histologically diagnosed as AFH were assessed for EWSR1 rearrangements or EWSR1-CREB1 and EWSR1-ATF1 fusion transcripts. All 17 were positive for either FISH or RT-PCR or both. Of 16, 14 (87.5%) had detectable EWSR1-CREB1 or EWSR1-ATF1 fusion transcripts by RT-PCR, whereas 13 (76.5%) of 17 had positive EWSR1 rearrangement with FISH. All 13 of 13 non-AFH control neoplasms failed to show EWSR1-CREB1 or EWSR1-ATF1 fusion transcripts, whereas EWSR1 rearrangement was present in 2 of these 13 cases (which were histopathologically myoepithelial neoplasms). This study shows that EWSR1-CREB1 or EWSR1-ATF1 fusions predominate in AFH (supporting previous reports that FUS rearrangement is rare in AFH) and that RT-PCR has a comparable detection rate to FISH for AFH. Importantly, cases of AFH can be missed if RT-PCR is not performed in conjunction with FISH, and RT-PCR has the added advantage of specificity, which is crucial, as EWSR1 rearrangements are present in a variety of neoplasms in the histologic differential diagnosis of AFH, that differ in behavior and treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metastatic process requires changes in tumor cell adhesion properties, cell motility and remodeling of the extracellular matrix. The erbB2 proto-oncogene is overexpressed in approximately 30% of breast cancers and is a major prognostic parameter when present in invasive disease. A ligand for the erbB2 receptor has not yet been identified but it can be activated by heterodimerization with heregulin (HRG)-stimulated erbB3 and erbB4 receptors. The HRGs are a family of polypeptide growth factors that have been shown to play a role in embryogenesis, tumor formation, growth and differentiation of breast cancer cells. The erbB3 and erbB4 receptors are involved in transregulation of erbB2 signaling. The work presented here suggests biological roles for HRG including regulation of the actin cytoskeleton and induction of motility and invasion in breast cancer cells. HRG-expressing breast cancer cell lines are characterized by low erbB receptor levels and a high invasive and metastatic index, while those which overexpress erbB2 demonstrate minimal invasive potential in vitro and are non-tumorigenic in vivo. Treatment of the highly tumorigenic and metastatic HRG-expressing breast cancer cell line MDA-MB-231 with an HRG-neutralizing antibody significantly inhibited proliferation in culture and motility in the Boyden chamber assay. Addition of exogenous HRG to non-invasive erbB2 overexpressing cells (SKBr-3) at low concentrations induced formation of pseudopodia, enhanced phagocytic activity and increased chemomigration and invasion in the Boyden chamber assay. The specificity of the chemomigration response to HRG is demonstrated by inhibition with the anti-HRG neutralizing antibody. These results suggest that either HRG can act as an autocrine or paracrine ligand to promote the invasive behavior of breast cancer cells in vitro or thus may enhance the metastatic process in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progeny of mice treated with the mutagen N-ethyl-N-nitrosourea (ENU) revealed a mouse, designated Longpockets (Lpk), with short humeri, abnormal vertebrae, and disorganized growth plates, features consistent with spondyloepiphyseal dysplasia congenita (SEDC). The Lpk phenotype was inherited as an autosomal dominant trait. Lpk/+ mice were viable and fertile and Lpk/Lpk mice died perinatally. Lpk was mapped to chromosome 15 and mutational analysis of likely candidates from the interval revealed a Col2a1 missense Ser1386Pro mutation. Transient transfection of wild-type and Ser1386Pro mutant Col2a1 c-Myc constructs in COS-7 cells and CH8 chondrocytes demonstrated abnormal processing and endoplasmic reticulum retention of the mutant protein. Histology revealed growth plate disorganization in 14-day-old Lpk/+ mice and embryonic cartilage from Lpk/+ and Lpk/Lpk mice had reduced safranin-O and type-II collagen staining in the extracellular matrix. The wild-type and Lpk/+ embryos had vertical columns of proliferating chondrocytes, whereas those in Lpk/Lpk mice were perpendicular to the direction of bone growth. Electron microscopy of cartilage from 18.5 dpc wild-type, Lpk/+, and Lpk/Lpk embryos revealed fewer and less elaborate collagen fibrils in the mutants, with enlarged vacuoles in the endoplasmic reticulum that contained amorphous inclusions. Micro-computed tomography (CT) scans of 12-week-old Lpk/+ mice revealed them to have decreased bone mineral density, and total bone volume, with erosions and osteophytes at the joints. Thus, an ENU mouse model with a Ser1386Pro mutation of the Col2a1 C-propeptide domain that results in abnormal collagen processing and phenotypic features consistent with SEDC and secondary osteoarthritis has been established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural stem cell characteristics affected by oncogenic pathways and in a human motoneuron disease Stem cells provide the self-renewing cell pool for developing or regenerating organs. The mechanisms underlying the decisions of a stem or progenitor cell to either self-renew and maintain multipotentiality or alternatively to differentiate are incompletely understood. In this thesis work, I have approached this question by investigating the role of the proto-oncogene Myc in the regulatory functions of neural progenitor cell (NPC) self-renewal, proliferation and differentiation. By using a retroviral transduction technique to create overexpression models in embryonic NPCs cultured as neurospheres, I show that activated levels of Myc increase NPC self-renewal. Furthermore, several mechanisms that regulate the activity of Myc were identified. Myc induced self-renewal is signalled through binding to the transcription factor Miz-1 as shown by the inhibited capacity of a Myc mutant (MycV394D), deficient in binding to Miz-1, to increase self-renewal in NPCs. Furthermore, overexpression of the newly identified proto-oncogene CIP2A recapitulates the effects of Myc overexpression in NPCs. Also the expression levels and in vivo expression patterns of Myc and CIP2A were linked together. CIP2A stabilizes Myc protein levels in several cancer types by inhibiting its degradation and our results suggest the same function for CIP2A in NPCs. Our results also support the conception of self-renewal and proliferation being two separately regulated cellular functions. Finally, I suggest that Myc regulates NPC self-renewal by influencing the way stem and progenitor cells react to the environmental cues that normally dictate the cellular identity of tissues containing self-renewing cells. Neurosphere cultures were also utilised in order to characterise functional defects in a human disease. Neural stem cell cultures obtained post-mortem from foetuses of lethal congenital contracture syndrome (LCCS) were used to reveal possible cell autonomous differentiation defects of patient NPCs. However, LCCS derived NPCs were able to differentiate normally in vitro although several transcriptional differences were identified by using microarray analysis. Proliferation rate of the patient NPCs was also increased as compared to NPCs of age-matched control foetuses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum butyrylcholinesterase (BCHE) activity is associated with obesity, blood pressure and biomarkers of cardiovascular and diabetes risk. We have conducted a genome-wide association scan to discover genetic variants affecting BCHE activity, and to clarify whether the associations between BCHE activity and cardiometabolic risk factors are caused by variation in BCHE or whether BCHE variation is secondary to the metabolic abnormalities. We measured serum BCHE in adolescents and adults from three cohorts of Australian twin and family studies. The genotypes from approximately 2.4 million single-nucleotide polymorphisms (SNPs) were available in 8791 participants with BCHE measurements. We detected significant associations with BCHE activity at three independent groups of SNPs at the BCHE locus (P = 5.8 x 10(-262), 7.8 x 10(-47), 2.9 x 10(-12)) and at four other loci: RNPEP (P = 9.4 x 10(-16)), RAPH1-ABI2 (P = 4.1 x 10(-18)), UGT1A1 (P = 4.0 x 10(-8)) and an intergenic region on chromosome 8 (P = 1.4 x 10(-8)). These loci affecting BCHE activity were not associated with metabolic risk factors. On the other hand, SNPs in genes previously associated with metabolic risk had effects on BCHE activity more often than can be explained by chance. In particular, SNPs within FTO and GCKR were associated with BCHE activity, but their effects were partly mediated by body mass index and triglycerides, respectively. We conclude that variation in BCHE activity is due to multiple variants across the spectrum from uncommon/large effect to common/small effect, and partly results from (rather than causes) metabolic abnormalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cells are responsible for tissue turnover throughout lifespan. Only highly controlled specific environment, the stem cell niche , can sustain undifferentiated stem cell-pool. The balance between maintenance and differentiation is crucial for individual s health: uncontrolled stem cell self-renewal or proliferation can lead to hyperplasia and mutations that further provoke malignant transformation of the cells. On the other hand, uninhibited differentiation may result in diminished stem cell population, which is unable to maintain tissue turnover. The mechanisms that control the switch from maintenance to differentiation in stem cells are not well known. The same mechanisms that direct the self-renewal and proliferation in normal stem cells are likely to be also involved in maintenance of cancer stem cell . Cancer stem cells exhibit stem cell like properties such as self-renewal- and differentiation capacity and they can also regenerate the tumor tissue. In this thesis, I have investigated the effect of classical oncogenes E6/E7 and c-Myc, tumor suppressors p53 and retinoblastoma (pRb) family, and vascular endothelial growth factor (VEGF) subfamily and glial cell line-derived neurothropic factor (GDNF) family ligands on behavior of embryonic neural stem cells (NSCs) and progenitors. The study includes also the characterization of cytoskeletal tumor suppressor neurofibromatosis 2 (NF2) protein merlin and ezrin-radixin-moesin (ERM) protein ezrin expression in neural progenitors cells and their progeny. This study reveals some potential mechanisms regarding to NSCs maintenance. In summary, the studied molecules are able to shift the balance either towards stem cell maintenance or differentiation; tumor suppressor p53 represses whereas E6/E7 oncogenes and c-Myc increase the proportion of self-renewing and proliferating NSCs or progenitors. The data suggests that active MEK-ERK signaling is critical for self-renewal of normal and oncogene expressing NSCs. In addition, the results indicate that expression of cytoskeletal tumor suppressor merlin and ERM protein ezrin in central nervous system (CNS) tissue and progenitors indicates their role in cell differentiation. Furthermore, the data suggests that VEGF-C a factor involved in lymphatic system development, angiogenesis, neovascularization and metastasis but also in maintenance of some neural populations in brain is a novel thropic factor for progenitors in early sympathetic nervous system (SNS). It seems that VEGF-C dose dependently through ERK-pathway supports the proliferation and survival of early sympathetic progenitor cells, and the effect is comparable to that of GDNF family ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muscle hypertrophy occurs following increased protein synthesis, which requires activation of the ribosomal complex. Additionally, increased translational capacity via elevated ribosomal RNA (rRNA) synthesis has also been implicated in resistance training-induced skeletal muscle hypertrophy. The time course of ribosome biogenesis following resistance exercise (RE) and the impact exerted by differing recovery strategies remains unknown. In the present study, the activation of transcriptional regulators, the expression levels of pre-rRNA, and mature rRNA components were measured through 48 h after a single-bout RE. In addition, the effects of either low-intensity cycling (active recovery, ACT) or a cold-water immersion (CWI) recovery strategy were compared. Nine male subjects performed two bouts of high-load RE randomized to be followed by 10 min of either ACT or CWI. Muscle biopsies were collected before RE and at 2, 24, and 48 h after RE. RE increased the phosphorylation of the p38-MNK1-eIF4E axis, an effect only evident with ACT recovery. Downstream, cyclin D1 protein, total eIF4E, upstream binding factor 1 (UBF1), and c-Myc proteins were all increased only after RE with ACT. This corresponded with elevated abundance of the pre-rRNAs (45S, ITS-28S, ITS-5.8S, and ETS-18S) from 24 h after RE with ACT. In conclusion, coordinated upstream signaling and activation of transcriptional factors stimulated pre-rRNA expression after RE. CWI, as a recovery strategy, markedly blunted these events, suggesting that suppressed ribosome biogenesis may be one factor contributing to the impaired hypertrophic response observed when CWI is used regularly after exercise.