979 resultados para Proto-Oncogene Proteins c-mdm2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor budding (single tumor cells or small tumor cell clusters) at the invasion front of colorectal cancer (CRC) is an adverse prognostic indicator linked to epithelial-mesenchymal transition. This study characterized the immunogenicity of tumor buds by analyzing the expression of the major histocompatibility complex (MHC) class I in the invasive tumor cell compartment. We hypothesized that maintenance of a functional MHC-I antigen presentation pathway, activation of CD8+ T-cells, and release of antitumoral effector molecules such as cytotoxic granule-associated RNA binding protein (TIA1) in the tumor microenvironment can counter tumor budding and favor prolonged patient outcome. Therefore, a well-characterized multipunch tissue microarray of 220 CRCs was profiled for MHC-I, CD8, and TIA1 by immunohistochemistry. Topographic expression analysis of MHC-I was performed using whole tissue sections (n = 100). Kirsten rat sarcoma viral oncogene homolog (KRAS) and B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutations, mismatch repair (MMR) protein expression, and CpG-island methylator phenotype (CIMP) were investigated. Our results demonstrated that membranous MHC-I expression is frequently down-regulated in the process of invasion. Maintained MHC-I at the invasion front strongly predicted low-grade tumor budding (P = 0.0004). Triple-positive MHC-I/CD8/TIA1 in the tumor microenvironment predicted early T-stage (P = 0.0031), absence of lymph node metastasis (P = 0.0348), lymphatic (P = 0.0119) and venous invasion (P = 0.006), and highly favorable 5-year survival (90.9% vs 39.3% in triple-negative patients; P = 0.0032). MHC-I loss was frequent in KRAS-mutated, CD8+ CRC (P = 0.0228). No relationship was observed with CIMP, MMR, or BRAF mutation. In conclusion, tumor buds may evade immune recognition through downregulation of membranous MHC-I. A combined profile of MHC-I/CD8/TIA1 improves the prognostic value of antitumoral effector cells and should be preferred to a single marker approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metaplastic breast carcinoma (MBC) is a rare histological breast cancer subtype characterized by mesenchymal elements and poor clinical outcome. A large fraction of MBCs harbor defects in breast cancer 1 (BRCA1). As BRCA1 deficiency sensitizes tumors to DNA cross-linking agents and poly(ADP-ribose) polymerase (PARP) inhibitors, we sought to investigate the response of BRCA1-deficient MBCs to the PARP inhibitor olaparib. To this end, we established a genetically engineered mouse model (GEMM) for BRCA1-deficient MBC by introducing the MET proto-oncogene into a BRCA1-associated breast cancer model, using our novel female GEMM ES cell (ESC) pipeline. In contrast to carcinomas, BRCA1-deficient mouse carcinosarcomas resembling MBC show intrinsic resistance to olaparib caused by increased P-glycoprotein (Pgp) drug efflux transporter expression. Indeed, resistance could be circumvented by using another PARP inhibitor, AZD2461, which is a poor Pgp substrate. These preclinical findings suggest that patients with BRCA1-associated MBC may show poor response to olaparib and illustrate the value of GEMM-ESC models of human cancer for evaluation of novel therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-cell intercalation is used in several developmental processes to shape the normal body plan. There is no clear evidence that intercalation is involved in pathologies. Here we use the proto-oncogene myc to study a process analogous to early phase of tumour expansion: myc-induced cell competition. Cell competition is a conserved mechanism driving the elimination of slow-proliferating cells (so-called 'losers') by faster-proliferating neighbours (so-called 'winners') through apoptosis and is important in preventing developmental malformations and maintain tissue fitness. Here we show, using long-term live imaging of myc-driven competition in the Drosophila pupal notum and in the wing imaginal disc, that the probability of elimination of loser cells correlates with the surface of contact shared with winners. As such, modifying loser-winner interface morphology can modulate the strength of competition. We further show that elimination of loser clones requires winner-loser cell mixing through cell-cell intercalation. Cell mixing is driven by differential growth and the high tension at winner-winner interfaces relative to winner-loser and loser-loser interfaces, which leads to a preferential stabilization of winner-loser contacts and reduction of clone compactness over time. Differences in tension are generated by a relative difference in F-actin levels between loser and winner junctions, induced by differential levels of the membrane lipid phosphatidylinositol (3,4,5)-trisphosphate. Our results establish the first link between cell-cell intercalation induced by a proto-oncogene and how it promotes invasiveness and destruction of healthy tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic myelogenous leukemia (CML) is characterized cytogenetically by the presence of the Philadelphia chromosome and clinically by the clonal expansion of the hematopoietic stem cells and the accumulation of large numbers of myeloid cells. Philadelphia chromosome results from the reciprocal translocation between chromosomes 9 and 22 [t(9;22)(324;q11)], which fuses parts of the ABL proto-oncogene to 5′ portions of the BCR gene. The product of the fused gene is Bcr-Abl oncoprotein. Bcr-Abl oncoprotein has elevated protein tyrosine kinase activity, and is the cause of Philadelphia chromosome associated leukemias. The Bcr sequence in the fusion protein is crucial for the activation of Abl kinase activity and transforming phenotype of Bcr-Abl oncoprotein. Although the Bcr-Abl oncoprotein has been studied extensively, its normal counterpart, the Bcr protein, has been less studied and its function is not well understood. At this point, Bcr is known to encode a novel serine/threonine protein kinase. In Bcr-Abl positive leukemia cells, we found that the serine kinase activity of Bcr is impaired by tyrosine phosphorylation. Both the Bcr protein sequences within Bcr-Abl and the normal cellular Bcr protein lack serine/threonine kinase activity when they become phosphorylated on tyrosine residues by Bcr-Abl. Therefore, the goal of this study was to investigate the role of Bcr in Bcr-Abl positive leukemia cells. We found that overexpression of Bcr can inhibit Bcr-Abl tyrosine kinase activity, and the inhibition is dependent on its intact serine/threonine kinase function. Using the tet repressible promoter system, we demonstrated that Bcr when induced in Bcr-Abl positive leukemia cells inhibited the Bcr-Abl oncoprotein tyrosine kinase. Furthermore, induction of Bcr also increased the number of cells undergoing apoptosis and inhibited the transforming ability of Bcr-Abl. In contrast to the wild-type Bcr, the kinase-inactive mutant of Bcr (Y328F/Y360F) had no effects on Bcr-Abl tyrosine kinase in cells. Results from other experiments indicated that phosphoserine-containing Bcr sequences within the first exon, which are known to bind to the Abl SH2 domain, are responsible for observed inhibition of the Bcr-Abl tyrosine kinase. Several lines of evidence suggest that the phosphoserine form of Bcr, which binds to the Abl SH2 domain, strongly inhibits the Abl tyrosine kinase domain of Bcr-Abl Previously published findings from our laboratory have also shown that Bcr is phosphorylated on tyrosine residue 177 in Bcr-Abl positive cells and that this form of Bcr recruits the Grb2 adaptor protein, which is known to activate the Ras pathway. These findings implicate Bcr as an effector of Bcr-Abl's oncogenic activity. Therefore based on the findings presented above, we propose a model for dual Function of Bcr in Bcr-Abl positive leukemia cells. Bcr, when active as a serine/threonine kinase and thus autophosphorylating its own serine residues, inhibits Bcr-Abl's oncogenic functions. However, when Ber is tyrosine phosphorylated, its Bcr-Abl inhibitory function is neutralized thus allowing Bcr-Abl to exert its full oncogenic potential. Moreover, tyrosine phosphorylated Bcr would compliment Bcr-Abl's neoplastic effects by the activation of the Ras signaling pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations into the molecular basis of glioblastoma multiforme led to the identification of a putative tumor suppressor gene, MMAC/ PTEN. Initial studies implicated MMAC/PTEN in many different tumor types, and identified a protein phosphatase motif in its sequence. This project aimed to identify the biological and biochemical functions of MMAC/PTEN by transiently expressing the gene in cancer cells that lack a functional gene product. ^ Expression of MMAC/PTEN mildly suppressed the growth of U251 human glioma cells and abrogated the growth advantage mediated by overexpression of the epidermal growth factor receptor (EGFR). Immunoblotting demonstrated that MMAC/PTEN expression did not affect the phosphorylation of the EGFR itself, or the intermediates of several downstream signaling pathways. However, MMAC/PTEN expression significantly reduced the phosphorylation and catalytic activity of the proto-oncogene Akt/PKB. While Akt/PKB regulates the survival of many cell types, expression of MMAC/PTEN did not induce apoptosis in adherent U251 cells. Instead, MMAC/PTEN expression sensitized the cells to apoptosis when maintained in suspension (anoikis). As the survival of suspended cells is one of the hallmarks leading to metastasis, MMAC/PTEN expression was examined in a system in which metastasis is more clinically relevant, prostate cancer. ^ Expression of MMAC/PTEN in both LNCaP and PC3-P human prostate cancer cells specifically inhibited Akt/PKB phosphorylation. MMAC/PTEN expression in LNCaP cells resulted in a profound inhibition of growth that was significantly greater than that achieved with expression of p53. Expression of MMAC/PTEN in PC3-P cells resulted in greater growth inhibition than was observed in U251 glioma cells, but less than was observed in LNCaP cells, or upon p53 expression. To determine if MMAC/PTEN could function as a tumor suppressor in vivo, the effects of MMAC/PTEN expression on PC3-P cells implanted orthotopically in nude mice were examined. The ex-vivo expression of MMAC/PTEN did not decrease tumor incidence, but it did significantly decrease tumor size and metastasis. In-vivo expression of MMAC/PTEN in pre-established PC3-P tumors did not significantly inhibit tumor incidence or size, but did inhibit metastasis formation. ^ These studies demonstrate that MMAC/PTEN is a novel and important tumor suppressor gene, which functions to downregulate an important cell survival signaling pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Premature termination of protein synthesis by nonsense mutations is at the molecular origin of a number of inherited disorders in the family of G protein-coupled seven-helix receptor proteins. To understand how such truncated polypeptides are processed by the cell, we have carried out COS-1 cell expression studies of mutants of bovine rhodopsin truncated at the first 1, 1.5, 2, 3, or 5 transmembrane segments (TMS) of the seven present in wild-type opsin. Our experiments show that successful completion of different stages in the cellular processing of the protein [membrane insertion, N-linked glycosylation, stability to proteolytic degradation, and transport from the endoplasmic reticulum (ER) membrane] requires progressively longer lengths of the polypeptide chain. Thus, none of the truncations affected the ability of the polypeptides to be integral membrane proteins. C-terminal truncations that generated polypeptides with fewer than two TMS resulted in misorientation and prevented glycosylation at the N terminus, whereas truncations that generated polypeptides with fewer than five TMS greatly destabilized the protein. However, all of the truncations prevented exit of the polypeptide from the ER. We conclude that during the biogenesis of rhodopsin, proper integration into the ER membrane occurs only after the synthesis of at least two TMS is completed. Synthesis of the next three TMS confers a gradual increase in stability, whereas the presence of more than five TMS is necessary for exit from the ER.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of the proto-oncogene MYC has been implicated in the genesis of diverse human cancers. One explanation for the role of MYC in tumorigenesis has been that this gene might drive cells inappropriately through the division cycle, leading to the relentless proliferation characteristic of the neoplastic phenotype. Herein, we report that the overexpression of MYC alone cannot sustain the division cycle of normal cells but instead leads to their arrest in G2. We used an inducible form of the MYC protein to stimulate normal human and rodent fibroblasts. The stimulated cells passed through G1 and S but arrested in G2 and frequently became aneuploid, presumably as a result of inappropriate reinitiation of DNA synthesis. Absence of the tumor suppressor gene p53 or its downstream effector p21 reduced the frequency of both G2 arrest and aneuploidy, apparently by compromising the G2 checkpoint control. Thus, relaxation of the G2 checkpoint may be an essential early event in tumorigenesis by MYC. The loss of p53 function seems to be one mechanism by which this relaxation commonly occurs. These findings dramatize how multiple genetic events can collaborate to produce neoplastic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The balance between the inductive signals and endogenous anti-apoptotic mechanisms determines whether or not programmed cell death occurs. The widely expressed inhibitor of apoptosis gene family includes three closely related mammalian proteins: c-IAP1, c-IAP2, and hILP. The anti-apoptotic properties of these proteins have been linked to caspase inhibition. Here we show that one member of this group, hILP, inhibits interleukin-1β-converting enzyme-induced apoptosis via a mechanism dependent on the selective activation of c-Jun N-terminal kinase 1. These data demonstrate that apoptosis can be inhibited by an endogenous cellular protein by a mechanism that requires the activation of a single member of the mitogen-activating protein kinase family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stimulation of β-adrenergic receptors (BAR) by clenbuterol (CLE) increases nerve growth factor (NGF) biosynthesis in the rat cerebral cortex but not in other regions of the brain. We have explored the transcription mechanisms that may account for the cortex-specific activation of the NGF gene. Although the NGF promoter contains an AP-1 element, AP-1-binding activity in the cerebral cortex was not induced by CLE, suggesting that other transcription factors govern the brain area-specific induction of NGF. Because BAR activation increases cAMP levels, we examined the role of CCAAT/enhancer-binding proteins (C/EBP), some of which are known to be cAMP-inducible. In C6–2B glioma cells, whose NGF expression is induced by BAR agonists, (i) CLE increased C/EBPδ-binding activity, (ii) NGF mRNA levels were increased by overexpressing C/EBPδ, and (iii) C/EBPδ increased the activity of an NGF promoter–reporter construct. Moreover, DNase footprinting and deletion analyses identified a C/EBPδ site in the proximal region of the NGF promoter. C/EBPδ appears to be responsible for the BAR-mediated activation of the NGF gene in vivo, since CLE elicited a time-dependent increase in C/EBPδ-binding activity in the cerebral cortex only. Our data suggest that, while AP-1 may regulate basal levels of NGF expression, C/EBPδ is a critical component determining the area-specific expression of NGF in response to BAR stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously isolated the hpttg proto-oncogene, which is expressed in normal tissues containing proliferating cells and in several kinds of tumors. In fact, expression of hPTTG correlates with cell proliferation in a cell cycle-dependent manner. Recently it was reported that PTTG is a vertebrate analog of the yeast securins Pds1 and Cut2, which are involved in sister chromatid separation. Here we show that hPTTG binds to Ku, the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). hPTTG and Ku associate both in vitro and in vivo and the DNA-PK catalytic subunit phosphorylates hPTTG in vitro. Furthermore, DNA double-strand breaks prevent hPTTG–Ku association and disrupt the hPTTG–Ku complexes, indicating that genome damaging events, which result in the induction of pathways that activate DNA repair mechanisms and halt cell cycle progression, might inhibit hPTTG–Ku interaction in vivo. We propose that hPTTG might connect DNA damage-response pathways with sister chromatid separation, delaying the onset of mitosis while DNA repair occurs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in the organization and mechanical properties of the actin network within plant and animal cells are primary responses to cell signaling. These changes are suggested to be mediated through the regulation of G/F-actin equilibria, alterations in the amount and/or type of actin-binding proteins, the binding of myosin to F-actin, and the formation of myosin filaments associated with F-actin. In the present communication, the cell optical displacement assay was used to investigate the role of phosphatases and kinases in modifying the tension and organization within the actin network of soybean cells. The results from these biophysical measurements suggest that: (a) calcium-regulated kinases and phosphatases are involved in the regulation of tension, (b) calcium transients induce changes in the tension and organization of the actin network through the stimulation of proteins containing calmodulin-like domains or calcium/calmodulin-dependent regulatory proteins, (c) myosin and/or actin cross-linking proteins may be the principal regulator(s) of tension within the actin network, and (d) these actin cross-linking proteins may be the principal targets of calcium-regulated kinases and phosphatases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Milk proteins have been studied continuously for over 50 years. Knowledge of this complex protein system has evolved incrementally in recent decades, largely coinciding with advances in technology. Proteomics and associated technologies have the potential to facilitate further advances in our knowledge of milk proteins. Proteomics allows for the detection, identification and characterization of milk proteins. More importantly, proteomics facilitates the analysis of large numbers of milk proteins simultaneously. In the first part of this review we provide a description of the key techniques used within proteomic methodologies, with an emphasis on their general uses within proteomics. In the second part we summarize recent applications of proteomics to milk proteins and highlight the potential for new and rapid advances in the analysis of milk proteins. In particular, we emphasise the effectiveness of two-dimensional gel electrophoresis in combination with various mass spectrometry techniques for the detailed characterization of milk proteins. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strength of synaptic transmission is highly variable between different synapses. The present study examined some factors that may contribute to this variation in the strength of neurotransmission in sympathetic varicosities of the mouse vas deferens. Transmitter release was measured using a focal macropatch electrode placed over pairs of visualised varicosities. By regulating the calcium concentration of the solutions inside the recording electrode and in the bath independently of each other, transmitter release was restricted to one or two surface varicosities at each recording site. Using this technique, transmitter release probability was shown to be highly variable, even between adjacent varicosities on single axon branches. Very little variation was observed in the calcium influx following single impulse nerve stimulation between adjacent Oregon Green BAPTA-1 loaded varicosities. However, the staining intensities of three vesicular proteins, SV2, synaptophysin, and synaptotagmin 1, showed considerable variation between adjacent varicosities on single axon branches. This variation in staining intensity may be partly explained by variation in the density of synaptic vesicles. However, double staining experiments using two vesicular antigens showed some varicosities staining for one vesicular antigen, but not for the second, suggesting that the expression of these release machinery proteins is regulated locally within the varicosities. The results of the present study strengthen suggestions that synaptic strength is at least in part, regulated by variation in the expression of vesicular proteins. (C) 2004 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gastrointestinal tracts of multi-cellular blood-feeding parasites are targets for vaccines and drugs. Recently, recombinant vaccines that interrupt the digestion of blood in the hookworm gut have shown efficacy, so we explored the intestinal transcriptomes of the human and canine hookworms, Necator americanus and Ancylostoma caninum, respectively. We used Laser Microdissection Microscopy to dissect gut tissue from the parasites, extracted the RNA and generated cDNA libraries. A total of 480 expressed sequence tags were sequenced from each library and assembled into contigs, accounting for 268 N. americanus genes and 276 A. caninum genes. Only 17% of N. americanus and 36% of A. caninum contigs were assigned Gene Ontology classifications. Twenty-six (9.8%) N. americanus and 18 (6.5%) A. caninum contigs did not have homologues in any databases including dbEST-of these novel clones, seven N. americanus and three A. caninum contigs had Open Reading Frames with predicted secretory signal peptides. The most abundant transcripts corresponded to mRNAs encoding cholesterol-and fatty acid-binding proteins, C-type lectins, Activation-Associated Secretory Proteins, and proteases of different mechanistic classes, particularly astacin-like metallopeptidases. Expressed sequence tags corresponding to known and potential recombinant vaccines were identified and these included homologues of proteases, anti-clotting factors, defensins and integral membrane proteins involved in cell adhesion. (c) 2006 Australian Society for Parasitology Inc Published by Elsevier Ltd. All fights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The caseins (alpha(s1), alpha(s2), beta, and kappa) are phosphoproteins present in bovine milk that have been studied for over a century and whose structures remain obscure. Here we describe the chemical synthesis and structure elucidation of the N-terminal segment (1-44) of bovine K-casein, the protein which maintains the micellar structure of the caseins. K-Casein (1-44) was synthesised by highly optimised Boc solid-phase peptide chemistry and characterised by mass spectrometry. Structure elucidation was carried out by circular dichroism and nuclear magnetic resonance spectroscopy. CD analysis demonstrated that the segment was ill defined in aqueous medium but in 30% trifluoroethanol it exhibited considerable helical structure. Further, NMR analysis showed the presence of a helical segment containing 26 residues which extends from Pro(8) to Arg(34). This is the first report which demonstrates extensive secondary structure within the casein class of proteins. (c) 2006 Elsevier Inc. All rights reserved.